地球科学进展 ›› 2007, Vol. 22 ›› Issue (1): 33 -40. doi: 10.11867/j.issn.1001-8166.2007.01.0033

所属专题: 青藏高原研究——青藏科考虚拟专刊

研究论文 上一篇    下一篇

近21年青藏高原植被覆盖变化规律
梁四海 1,陈 江 2,金晓媚 1,万 力 1,龚 斌 3   
  1. 1. 中国地质大学水资源与环境学院,北京 100083;2. 中国地质科学院水文地质环境地质研究所,河北 石家庄 050061;3. 中国环境科学研究院,北京 100012
  • 收稿日期:2006-05-22 修回日期:2006-11-20 出版日期:2007-01-10
  • 通讯作者: 梁四海(1970-),男,江苏徐州人,讲师,博士生,主要从事水文与生态环境教学与研究.E-mail: liangsh@cugb.edu.cn E-mail:liangsh@cugb.edu.cn
  • 基金资助:

    国家自然科学基金西部环境和生态项目“黄河源区区域地下水位下降机制及其环境效应”(编号:90302003);国土资源部黄河源区调查项目“黄河源区1∶25万生态环境地质调查”(编号:1999123004121);长江源区调查项目“长江源区1∶25万生态环境地质调查”(编号:20050127)共同资助.

Regularity of Vegetation Coverage Changes in the Tibetan Plateau  over the Last 21 Years

LIANG Si-hai 1, CHEN Jiang 2, JIN Xiao-mei 1, WAN Li 1, GONG Bin 3   

  1. 1.School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China;2.The Institute of Hydrogeology and Environmental Geology, Shijiazhuang 050061,China;3.Chinese Research Academy of Environmental Science, Beijing 100012, China
  • Received:2006-05-22 Revised:2006-11-20 Online:2007-01-10 Published:2007-01-10

利用GIMMSNDVI遥感数据和GIS技术,结合多种统计、计算方法,定量分析了1982—2002年青藏高原植被覆盖随时间和空间的变化规律,评定了植被变化的自然和人类的影响。结果表明,21年来,青藏高原植被覆盖呈总体增加的变化趋势,平均增长率为3 961.9 km2/年,仅局部出现退化现象,人类对高原植被覆盖未造成破坏性影响。1982—1991年,高原植被呈现良好增加趋势,增加幅度从东部南部向西部北部逐渐减弱,表明由东南向西北逐步减弱的有利气候条件具有经向和纬向的变化规律。1992—2002年,高原中部和西北地区植被呈现退化趋势,强烈退化的地区集中在长江、黄河、澜沧江和怒江的源头地区,显示了高原中部和西北地区的气候条件向不利于植被生长方向转变,高原中部和西北地区植被是响应气候变化的最敏感区。高原植被变化具有7年、3.5年两个显著周期,均为温度所致,表现对温度的变化敏感性。21年期间,高原的8种主要植被类型中有7种类型表现为波动上升的趋势,且寒区旱区植被表现出脆弱性和难恢复性。

Analysis of the vegetation coverage changing with the time in the last 21 years is the purpose of this paper to study the regularity of the regional eco-environment in the Tibetan plateau. Based on the remote sensing data GIMMS NDVI, statistical processing and analysis, also calculation, the paper gives quantitative analyses and evaluations of the variability of vegetated rate of the Tibetan plateau. In the last 21 years, the regional vegetation coverage has been on the slow increase at the rate of 3 961.9 km2/a as a whole, except for some place degradation, and also the human have not done damage to the eco-environment. From 1982 to 1991, the vegetation coverage of the whole region increased, except for degrading region at the middle and the west of the area. The value increased is decreasing from the south and the east to the north and the west. The induction, the climate benefiting the vegetation growing, changing with degree of longitude and latitude, can be worked out. It's the main period from 1992 to 2002 that the vegetation degrade, those deteriorated regions are located in the resource regions of the Yangtze river, the Yellow river, the Lancangjiang river and the Nujiang river, which indicates the changing climate would be adverse to the vegetation. The NDVI also has two significant periods of 7 years and 3.5 years, caused by the same significant periods of the temperature, and that indicates that the plateau plant is more senstive to the temperature than to the precipitation. Over 21 years, there are 7 from 8 types vegetation coverage which are raising unstably including clod-arid-region plant with vulnerability and difficult recovery.

中图分类号: 

[1]Mo Shenguo,Zhang Baiping,Cheng Weiming, et al. Major environmental effects of the Tibetan plateau[J]. Progress in Geography,2004,23(2):88-96.[莫申国,张百平,程维明. 青藏高原的主要环境效应[J]. 地理科学进展,2004,23(2):88-96.]
[2]Tu Jun,Shi Chengcang. Study on the degeneration of alpine meadow grassland in Qingzang Plateau with remote sensing techniques[J].Acta Agrestia Sinica,1998,6(3):226-233.[涂军,石承苍. 青藏高原退化高寒草甸草原分类的遥感研究[J]. 草地学报,1998,6(3):226-233.]
[3]Tu Jun,Xiong Yan,Shi Dejun. Study on alpine meadow and grassland degradation with remote sensing techniques in Qinghai [J].Chinese Journal of Applied and Environmental Biology,1999,5(2):131-135. [涂军,熊燕,石德军. 青海高寒草甸草地退化的遥感技术调查分析[J]. 应用与环境生物学报,1999,5(2):131-135.]
[4]Niu Yafei. The study of environment in the plateau of Qingzang Tibet [J]. Progress in Geography,1999,18(2):163-171.[牛亚非. 青藏高原生态环境问题研究[J]. 地理科学进展,1999,18(2):163-171.]
[5]Zhao Zhong,Wang Anlu,Ma Haisheng, et al. Studies on dynamics monitor and sustainable development in eastern edge of Qinghai-Tibetan alpine grassland [J].Pratacultural Science,2002,19(6):9-13.[赵忠,王安禄,马海生,等. 青藏高原东缘草地生态系统动态定位监测与可持续发展要素研究[J].草业科学,2002,19(6):9-13.]
[6]Yang Fuyu,Zhang Yunwei,Miao Yanjun, et al. Main limiting factors for deteriorated grasslands vegetation restoration of northern Tibet plateau [J].Bulletin of Soil and Water Conservation,2003,23(4):19-20.[杨富裕,张蕴薇,苗彦军,等. 藏北高寒退化草地植被恢复过程的障碍因子初探[J].水土保持通报,2003,23(4):19-20.]
[7]Ding Mingjun, Shen Zhenxi, Zhang Yili, et al. Vegetation change along the Qinghai-Xizang highway and railway from 1981 to 2001 [J].Resources Science,2005,27(5):128-133.[丁明军,沈振西,张镱锂等.青藏公路与铁路沿途1981—2001年植被覆盖变化[J]. 资源科学,2005,27(5):128-133.]
[8]Yang Jianping,Ding Yongjian,Chen Rensheng. NDVI Reflection of alpine vegetation changes in the source regions of the Yangtze and Yellow rivers [J].Acta Geographica Sinica,2005,60(3):467-478.[杨建平,丁永建,陈仁升. 长江黄河源区高寒植被变化的NDVI记录[J]. 地理学报,2005,60(3):467-478.] 
[9]Wang Genxu,Ding Yongjian,Wang Jian, et al. Land ecological changes and evolutional patterns in the source regions of the Yangtze and Yellow rivers in recent 15 years [J]. Acta Geographica Sinica,2004,59(2):163-173.[王根绪,丁永建,王建,等. 近15年来长江黄河源区的土地覆被变化[J]. 地理学报,2004,59(2):163-173.]
[10]Fang Jingyun, Piao Shilong, He Jinsheng, et al. Activity of vegetation in China has been augmented in recent 20 years[J].Science in China (Series C),2003,33(6):554-565.[方精云,朴世龙,贺金生,等.近20年来中国植被活动在增强[J].中国科学:C辑,2003,33(6):554-565.]
[11]Xiang Bo,Liao Qilong,Gao Qingsheng. Study on the relation between the climate change and NDVI in the Tibetan plateau [J].Sichuan Climate,2001,75(1):29-36.[向波,缪启龙,高庆先.青藏高原气候变化与植被指数的关系研究[J]. 四川气象,2001,75(1):29-36.]
[12]Yang Yuanhe,Piao Shilong. Variations in grassland  vegetation cover in relation to climatic factors on the Tibetan plateau [J].Journal of Plant Ecology,2006,30(1):1-8.[杨元合,朴世龙. 青藏高原草地植被覆盖变化及其与气候因子的关系[J].植物生态学报,2006,30(1):1-8.] 
[13]Hideki Kobayashi, Dennis G Dye.Atmospheric conditions for monitoring the long-term vegetation dynamics in the Amazon using normalized difference vegetation index [J].Remote Sensing of Environment,2005, 97(4): 519-525.
[14]Scott J Goetz, Gregory J Fiske, Andrew G Bunn. Using satellite time-series data sets to analyze fire disturbance and forest recovery across Canada [J]. Remote Sensing of Environment,2006, 101(3):352-365.
[15]Hou Xueyu. The Vegetation Map of the People's Repubilic of China[M]. Beijing: Sino Maps Press, 1979.[侯学煜.中华人民共和国植被图[M].北京 : 地图出版社, 1979.]
[16]Ang Mao, Shi Baoshun. The status of degraded grassland and it’s control methods in Xinghai county[J].Qinghai Prataculture,2000,9(4):21-22.[昂毛,施宝顺. 兴海县退化草地现状及治理对策[J].青海草业,2000,9(4):21-22.]

[1] 兰爱玉, 林战举, 范星文, 姚苗苗. 青藏高原北麓河多年冻土区阴阳坡地表能量和浅层土壤温湿度差异研究[J]. 地球科学进展, 2021, 36(9): 962-979.
[2] 仲雷,葛楠,马耀明,傅云飞,马伟强,韩存博,王显,程美琳. 利用静止卫星估算青藏高原全域地表潜热通量[J]. 地球科学进展, 2021, 36(8): 773-784.
[3] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[4] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[5] 马宁. 40年来青藏高原典型高寒草原和湿地蒸散发变化的对比分析[J]. 地球科学进展, 2021, 36(8): 836-848.
[6] 柯思茵,张冬丽,王伟涛,王孟豪,段磊,杨敬钧,孙鑫,郑文俊. 青藏高原东北缘晚更新世以来环境变化研究进展[J]. 地球科学进展, 2021, 36(7): 727-739.
[7] 魏梦美,符素华,刘宝元. 青藏高原水力侵蚀定量研究进展[J]. 地球科学进展, 2021, 36(7): 740-752.
[8] 王忠静,石羽佳,张腾. TRMM遥感降水低估还是高估中国大陆地区的降水?[J]. 地球科学进展, 2021, 36(6): 604-615.
[9] 李耀辉, 孟宪红, 张宏升, 李忆平, 王闪闪, 沙莎, 莫绍青. 青藏高原—沙漠的陆—气耦合及对干旱影响的进展及其关键科学问题[J]. 地球科学进展, 2021, 36(3): 265-275.
[10] 崔林丽, 史军, 杜华强. 植被物候的遥感提取及其影响因素研究进展[J]. 地球科学进展, 2021, 36(1): 9-16.
[11] 吴佳梅,彭秋志,黄义忠,黄亮. 中国植被覆盖变化研究遥感数据源及研究区域时空热度分析[J]. 地球科学进展, 2020, 35(9): 978-989.
[12] 董治宝,吕萍,李超. 火星风沙地貌研究方法[J]. 地球科学进展, 2020, 35(8): 771-788.
[13] 杨军怀,夏敦胜,高福元,王树源,陈梓炫,贾佳,杨胜利,凌智永. 雅鲁藏布江流域风成沉积研究进展[J]. 地球科学进展, 2020, 35(8): 863-877.
[14] 刘元波, 吴桂平, 赵晓松, 范兴旺, 潘鑫, 甘国靖, 刘永伟, 郭瑞芳, 周晗, 王颖, 王若男, 崔逸凡. 流域水文遥感的科学问题与挑战[J]. 地球科学进展, 2020, 35(5): 488-496.
[15] 姚天次,卢宏玮,于庆,冯玮. 50年来青藏高原及其周边地区潜在蒸散发变化特征及其突变检验[J]. 地球科学进展, 2020, 35(5): 534-546.
阅读次数
全文


摘要