地球科学进展 ›› 2005, Vol. 20 ›› Issue (1): 99 -105. doi: 10.11867/j.issn.1001-8166.2005.01.0099

全球变化研究 上一篇    下一篇

土壤有机碳的主导影响因子及其研究进展
周莉 1,2,3,李保国 1,周广胜 2   
  1. 1.中国农业大学资源与环境学院,北京 100094;
    2.中国科学院植物研究所植被数量生态学重点实验室,北京 100093;
    3.西华师范大学生物系,四川 南充 637002
  • 收稿日期:2003-11-03 修回日期:2004-05-17 出版日期:2005-01-25
  • 通讯作者: 周广胜(1965-),男,江苏高淳县人,研究员,主要从事全球生态学研究 E-mail:zhougs@public2.bta.net.cn
  • 基金资助:

    中国科学院知识创新工程重大项目“中国陆地和近海生态系统碳收支研究”(编号:KZCX1-SW-01-12);国家自然科学基金重点项目“中国东北样带典型生态系统碳循环的过程与机理”(编号:40231018)资助.

Advances in Controlling Factors of Soil Organic Carbon

ZHOU Li 1,2,3, LI Baoguo 1, ZHOU Guangsheng 2   

  1. 1. College of Resources and Environment, China Agricultural University, Beijing 100094, China; 
    2. Laboratory of Quantitative Vegetation Ecology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;
    3. Department of Biology, China West Normal University, Nanchong  Sichuan 637002, China
  • Received:2003-11-03 Revised:2004-05-17 Online:2005-01-25 Published:2005-01-25

土壤有机碳库是全球碳循环的重要组成部分,其积累和分解的变化直接影响全球的碳平衡。理解土壤有机碳蓄积过程对生物、物理和人为因素的响应,把握关键的控制因子是准确预测土壤有机碳在全球变化情景下对大气CO 2的源/汇方向及准确评估碳收支的关键。综述了土壤有机碳主导影响因子的研究进展,并针对陆地碳循环特点,提出未来土壤有机碳研究应加强土壤有机碳过程与状态的定量化、土壤有机碳分解对环境因子的敏感性、氮沉降对土壤有机碳的影响、土壤有机碳对气候变率的响应及其反馈作用,以及土壤有机碳动态的综合模拟 5个方面的研究,为准确评估陆地碳收支提供依据。

Soil organic carbon (SOC) is an important component of the global carbon cycle, and it has direct effects on the global carbon balance. Better understanding of the controlling factors of SOC and how SOC may respond to environmental changes are important to the accuracy for predicting the consequences of SOC under global change and evaluating the carbon budget. In this paper, the effects of climate, atmospheric composition, vegetation, soil property, land use and management practices on soil organic carbon (SOC) are presented. Based on this, some important tasks are also proposed, including (1) quantifying processes and states of SOC; (2) determining the controlling factors; (3) the effects of nitrogen deposition on SOC; (4) the responses and feedback of SOC to climate variability; and (5) the synthetic simulating SOC dynamics.

中图分类号: 

[1]Batjes N H. Total carbon and nitrogen in soils of the world[J].European Journal of Soil Science, 1996, 47:151-163.
[2]Jobbágy E G, Jackson R B. The vertical distribution of soil organic carbon and its relation to climate and vegetation [J].Ecological Applications, 2000,10:423-436.
[3]Post W M, King A M, Wullschleger S D. Soil organic matter models and global estimates of soil organic carbon [A]. In: Powlson D S, et al, eds. Evaluation of Soil Organic Matter Models [C]. Berlin, Heidelberg: Springer-Verlag,1996:201-224.
[4]Davidson E A, Trumbore S E, Amundson R. Soil warming and organic carbon content[J].Nature, 2000, 408(14):789-790.
[5]Huang Changyong. Pedology[M]. Beijing: Chinese Agriculture Press, 2000.[黄昌勇主编.土壤学[M].北京:中国农业出版社,2000.]
[6]Li Yuning, Wang Guanyu, Li Wei. Soil respiration and carbon cycle[J].Earth Science Frontiers, 2002,9(2):351-357.[李玉宁,王关玉,李伟.土壤呼吸作用和全球碳循环[J].地学前缘,2002,9(2):351-357.][7]Post W M,Emanuel W R,Zinke P J,et al.Soil carbon pools and world life zones [J].Nature, 1982, 298(8):156-159.
[8]Lin Xinxiong. States and management of soil organic matter in China[A]. In: Shen Shanmin eds. Soil Fertility in China[C]. Beijing: Chinese Agriculture Press,1998. 111-153.[林心雄.中国土壤有机质状况及其管理[A].见:沈善敏主编.中国土壤肥力[C].北京:中国农业出版社,1998. 111-153.]
[9]Jenkinson D S, Adams D E, Wild A. Model estimates of CO2 emissions from soil in response to global warming [J].Nature, 1991,351(23):304-306.
[10]Kirschbaum M U F. Will changes in soil organic carbon act as a positive or negative feedback on global warming? [J].Biogeochemistry, 2000,48:21-51.
[11]Ni Jian, Zhang Xinshi. Influences of changed CO2 concentration and climate change on terrestrial ecosystems[J].Exploration of Nature, 1998, 17(1):1-6.[倪健,张新时CO2增浓和气候变化对陆地生态系统的影响[J].大自然探索,1998, 17(1):1-6.]
[12]Luo Yiqi, Wan Shiqiang,Hui Dafeng, et al.Acclimatization of soil respiration to warming in a tall grass prairie[J].Nature, 2001,413:622-625.
[13]Melillo J M, Steudler P A, Aber J D, et al. Soil warming and carbon-cycle feedbacks to the climate system[J].Science, 2002, 298:2 173-2 176.
[14]Goulden M L, Wofsy S C, Harden J W, et al. Sensitivity of Boreal forest carbon balance to soil thaw[J].Science, 1998,279:214-217.
[15]Cao M K, Woodward F I. Dynamic responses of terrestrial ecosystem carbon cycling to global climate change [J].Nature, 1998, 393:249-252.
[16]Price D T, Peng C H, Apps M J, et al. Simulating effects of climate change on boreal ecosystem carbon pools in central Canada [J].Journal of Biogeography, 1999, 26:1 237-1 248.
[17]Zhang Linbo, Cao Hongfa, Gao Jixi, et al. Effect of plant changes induced by elevated atmospheric CO2 on soil Biota[J].Chinese Journal of Ecology, 1998,17(4):33-38.[张林波,曹洪法,高吉喜,等.大气CO2浓度升高对土壤微生物的影响[J].生态学杂志,1998,17(4):33-38.]
[18]Wang Xingfen, Bai Kezhi, Kuang Tingyun. Responses of plant dark respiration to doubled CO2 concentration[J].Acta Botanica Sinica, 1997, 9(9):849-854.[汪杏芬,白克智,匡廷云.大气CO2浓度倍增对植物暗呼吸的影响[J].植物学报,1997, 9(9):849-854.]
[19]Zhang Fengrong. Pedogeography[M]. Beijing: Chinese Agriculture Press, 2001.[张凤荣.土壤地理学[M].北京:中国农业出版社,2001.]
[20]Berger T W, Neubauer C, Glatzel G. Factors controlling soil carbon and nitrogen stores in pure stands of Norway spruce (Picea abies) and mixed species stands in Austria [J].Forest Ecology and Management, 2002,159:3-14.
[21]Hook P B, Burke I C. Biogeochemistry in a shortgrass landscape: Control by topography, soil texture, and microclimate [J].Ecology, 2000,81(10):2 686-2 703.
[22]Parton W J, Schimel D S, Cole C V, et al. Analysis of factors controlling soil organic matter levels in Great Plains Grasslands [J].Soil Science Society of America Journal, 1987,51:1 173-1 179.[23]Jeffrery E Herrick, Michelle M Wander. Relationships between soil organic carbon and soil quality in cropped and rangeland soils: The importance of distribution, composition, and soil biological activity [A].In: Lal R, et al,eds. Soil Processes and the Carbon Cycle [C]. Boca Raton: CRC Press, 1997. 405-425.
[24]Li Zhong, Sun Bo, Lin Xinxiong. Density of soil organic carbon and the factors controlling its turnover in east China[J].Scientia Geographica Sinca, 2001,21(4):301-307.[李忠,孙波,林心雄.我国东部土壤有机碳的密度及转化的控制因素[J].地理科学,2001,21(4):301-307.]
[25]Zhou Guangsheng, Wang Yuhui, Jiang Yanling, et al. Conversion of terrestrial ecosystems and carbon cycling[J].Acta Phytoecologica Sinica, 2002,26(2):250-254.[周广胜,王玉辉,蒋延玲,等陆地生态系统类型转变与碳循环[J].植物生态学报,2002,26(2):250-254.]
[26]Wang Yanfen, Chen Zuozhong, Larry T. Distribution of soil organic carbon in the major grasslands of Xilinguole, Inner Mogolia, China[J].Acta Phytoecologica Sinica,
1998,22(6):545-551.[王艳芬,陈佐忠,Larry T.人类活动对锡林郭勒地区主要草原土壤有机碳分布的影响[J].植物生态学报,1998,22(6):545-551.]
[27]Thuille A, Buchmann N, Schulze E D. Carbon stocks and soil respiration rates during deforestation, grassland use and subsequent Norway spruce afforestation in the Southern Alps, Italy [J].Tree Physiology, 2000, 20:849-857.
[28]Zhou Guangsheng. Global Carbon Cycle[M]. Beijing: Meteorologic Press, 2003.[周广胜.全球碳循环[M].北京:气象出版社,2003.]
[29]Xu Deying. The effect of Human management activities on the carbon in forest soils[J].World Forestry Research, 1994,5:26-31.[徐德应.人类经营活动对森林土壤碳的影响[J].世界林业研究,1994,5:26-31.]
[30]Li Linghao. Effects of land-use change on soil carbon storage in grassland ecosystems [J].Acta Phytoecologica Sinica, 1998,22(4):300-302.[李凌浩.土地利用变化对草原生态系统土壤碳贮量的影响[J].植物生态学报,1998,22(4):300-302.]
[31]Holt J A. Grassing pressure and soil carbon, microbial biomass and enzyme activities in semiarid northeastern Australia [J].Applied Soil Ecology, 1997, 5:143-149.
[32]Paul K I, Polglase P J, Nyakuengama J G, et al. Change in soil carbon following afforestation [J].Forest Ecology and Management, 2002,168:241-257.
[33]Liang Wenju, Wen Dazhong, Li Weiguang, et al. Effects of cultivation on soil organic carbon dynamics in agroecosystems[J].System Sciences and Comprehensive Studies in Agriculture, 2000, 16(4):241-244.[梁文举,闻大中,李维光,等.开垦对农业生态系统土壤有机碳动态变化的影响[J].农业系统科学与综合研究,2000, 16(4):241-244.]
[34]Tian Hongyan, Zhou Daowei, Guo Ping. The change of soil and vegetation with different years of leaving uncultivated[J].Journal of Northeast Normal University(Natural Science Edition), 2001,33(4):72-77.[田洪艳,周道玮,郭平.不同撂荒年限的草原农田土壤及植被的变化规律研究[J].东北师大学报(自然科学版),2001,33(4):72-77.]
[35]Knops J M H, Tilman D. Dynamics of soil nitrogen and carbon accumulation for 61 years after agricultural abandonment [J].Ecology, 2000, 81(1):88-89.
[36]Li Zhongpei, Tang Yongliang, Shi Hua, et al. Characteristics of C and N accumulation in infertile red soil under different rotation systems[J].Scientia Agricultura Sinica, 2002, 35(10):1 236-1 242.[李忠佩,唐永良,石华,等.不同轮作措施下瘠薄红壤中碳氮积累特征[J].中国农业科学,2002, 35(10):1 236-1 242.]
[37]Xu Yangchun, Shen Qirong, Ran Wei. Effects of zero-tillage and application of manure on soil microbial biomass C, N, and P after sixteen years of cropping[J].Acta Pedologica Sinica, 2002,39(1):89-96.[徐阳春,沈其荣,冉炜.长期免耕与施用化肥对土壤微生物生物量碳、氮、磷的影响[J].土壤学报,2002,39(1):89-96.]
[38]Ma Chengze, Zhou Qin, He Fang, et al. Surplus-eficit distribution of organic carbon in soil under combined fertilization[J].Acta Pedologica Sinica, 1996,31(1):35-41.[马成泽,周勤,何方,等.不同肥料配合施用土壤有机盈亏分布[J].土壤学报,1996,31(1):35-41.]
[39]Shen Hong, Cao Zhihong. Effect of long-term fertilization on soil available carbon pool and available ratio of soil carbon under different agroecosystems[J].Tropical and Subtropical Soil Science, 1998, 7(1):1-5.[沈宏,曹志洪.长期施肥对不同农田生态系统土壤有效碳库及碳素有效率的影响[J].热带亚热带土壤科学,1998, 7(1):1-5.]
[40]Giardina C P, Ryan M G. Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature [J].Nature, 2000, 404(20):858-861.
[41]Trumbore Susan E, Chadwick Oliver A, Amundson Ronald. Rapid exchange between soil carbon and atmospheric carbon dioxide driven by temperature change [J].Science, 1996,272(19):393-396.
[42]Valentini R, Matteucci G, Dolman A J, et al. Respiration as the main determinant of carbon balance in European forests[J].Nature, 2000,404(20):861-865.

[1] 张亚峰, 姚振, 马强, 姬丙艳, 苗国文, 许光, 马风娟. 青藏高原北缘土壤碳库和碳汇潜力研究[J]. 地球科学进展, 2018, 33(2): 206-212.
[2] 曲建升, 肖仙桃, 曾静静. 国际气候变化科学百年研究态势分析 *[J]. 地球科学进展, 2018, 33(11): 1193-1202.
[3] 史培军, 王爱慧, 孙福宝, 李宁, 叶涛, 徐伟, 王静爱, 杨建平, 周洪建. 全球变化人口与经济系统风险形成机制及评估研究[J]. 地球科学进展, 2016, 31(8): 775-781.
[4] 吴炳方, 邢强. 遥感的科学推动作用与重点应用领域[J]. 地球科学进展, 2015, 30(7): 751-762.
[5] 黄邦钦, 柳欣. 边缘海浮游生态系统对生物泵的调控作用[J]. 地球科学进展, 2015, 30(3): 385-395.
[6] 艾丽坤, 王晓毅. 全球变化研究中自然科学和社会科学协同方法的探讨[J]. 地球科学进展, 2015, 30(11): 1278-1286.
[7] 房启飞, 张虎权. 地球系统变化对叠层石衰减影响的研究综述[J]. 地球科学进展, 2014, 29(9): 1003-1010.
[8] 魏学琼, 叶瑜, 崔玉娟, 李蓓蓓, 袁存, 方修琦. 中国历史土地覆被变化重建研究进展[J]. 地球科学进展, 2014, 29(9): 1037-1045.
[9] 邹学勇, 张春来, 程宏, 亢力强, 吴晓旭, 常春平, 王周龙, 张峰, 李继峰, 刘辰琛, 刘博, 田金鹭. 土壤风蚀模型中的影响因子分类与表达[J]. 地球科学进展, 2014, 29(8): 875-889.
[10] 刘贤赵, 张勇, 宿庆, 田艳林, 全斌, 王国安. 现代陆生植物碳同位素组成对气候变化的响应研究进展[J]. 地球科学进展, 2014, 29(12): 1341-1354.
[11] 史培军, 孔锋, 叶谦, 汪明, 刘凯. 灾害风险科学发展与科技减灾[J]. 地球科学进展, 2014, 29(11): 1205-1211.
[12] 汪品先. 对地球系统科学的理解与误解——献给第三届地球系统科学大会[J]. 地球科学进展, 2014, 29(11): 1277-1279.
[13] WuGuoxiong,LinHai,ZouXiaolei,LiuBoqi,HeBian. 全球气候变化研究与科学数据[J]. 地球科学进展, 2014, 29(1): 15-22.
[14] 周广胜,何奇瑾. 生态系统响应全球变化的陆地样带研究[J]. 地球科学进展, 2012, 27(5): 563-572.
[15] 阚泽忠,金立新,李忠惠,杨振鸿,张 华,包雨函. 成都经济区不同地貌景观区土壤有机碳分布特征及储量估算[J]. 地球科学进展, 2012, 27(10): 1126-1133.
阅读次数
全文


摘要