地球科学进展 ›› 2012, Vol. 27 ›› Issue (6): 651 -659. doi: 10.11867/j.issn.1001-8166.2012.06.0651

综述与评述 上一篇    下一篇

甲烷氧化与氨氧化微生物及其耦合功能
赵吉 1,李靖宇 2,周玉 1,白玉涛 2,于景丽 1   
  1. 1.内蒙古大学环境与资源学院,内蒙古呼和浩特010021;
    2.内蒙古大学生命科学学院,内蒙古呼和浩特010021
  • 收稿日期:2011-10-27 修回日期:2012-03-27 出版日期:2012-06-10
  • 通讯作者: 赵吉(1962-),男,内蒙古呼和浩特人,教授,主要从事环境微生物学研究.  E-mail:ndzj@imu.edu.cn
  • 基金资助:

    国家自然科学基金项目“蒙古高原沼泽化湿地甲烷及氨氧化菌的空间异质性与环境功能性研究”(编号:31160129);国家重点基础研究发展计划前期研究课题“内蒙古高原湿地土壤微生物功能群及其多样性与生态系统功能研究”(编号:2009CB125909)资助.

Methane and Ammonia-Oxidation Microorganisms and Their Coupling Functions

Zhao Ji 1, Li Jingyu 2, Zhou Yu 1, Bai Yutao 2, Yu Jingli 1   

  1. 1.College of Environment & Resources, Inner Mongolia University, Huhhot010021, China;
    2.College of Life Sciences, Inner Mongolia University, Huhhot010021, China
  • Received:2011-10-27 Revised:2012-03-27 Online:2012-06-10 Published:2012-06-10

甲烷氧化与氨氧化过程分别对控制温室气体甲烷和氧化亚氮方面有着特殊作用,土壤及湿地等环境中的甲烷氧化菌和氨氧化菌在生态系统碳、氮生物循环中扮演着重要的角色。论述了甲烷氧化与氨氧化过程的微生物学机制,甲烷氧化菌和氨氧化菌的群落结构变化,分析了甲烷氧化菌和氨氧化菌在碳、氮循环以及它们在控制重要温室气体排放中的环境功能,阐述了甲烷氧化菌和氨氧化菌的关联作用机制。以期深入揭示甲烷氧化菌与氨氧化菌的空间分异与耦合机制,为深入探讨这类微生物的生态机制和环境功能提供科学线索。

The greenhouse effects of methane and nitrous oxide are significantly higher than carbon dioxide, respectively 23 and 296 times, respectively. Carbon dioxide, methane and nitrous oxide distribute in the atmosphere, and lead the earth’s temperature rising. The wetlands account for more than half of greenhouse gas emissions in the atmosphere than that from water bodies. So the wetlands significantly affect the global climate changes.Soil microorganisms play important roles in maintaining ecological functions of the wetlands. Methane-oxidizer can use methane as the sole carbon and energy, and generate the energy for growth during the oxidation of methane to same amount of carbon dioxide. Methane-oxidizer plays an important role not only in methane consuming, but also in carbon, oxygen, nitrogen cycles in the land-water environments. Methane-oxidizer is the key group for controlling the methane emission and involving in the carbon cycle, and play important roles in greenhouse gas methane emission and in the carbon cycle. Ammonia-oxidation is the key and limiting step of the nitrification which is responsible for deep-sea huge library of nitrate formation. Methane and ammonia-oxidizer have similar substrates methane and ammonia to generate energy respectively. Oxidation of methane and ammonium are two different processes catalyzed by completely unrelated microorganisms. Still, the two processes do have many interesting aspects in common. Aerobic methane-oxidizer involving in the process of methane oxidation is as follows: CH4→CH3OH→HCHO→ HCOOH→CO2. Anaerobic oxidation of methane is a microbial process occurring mainly in anoxic marine sediments, and methane is oxidized with sulfate as the terminal electron acceptor. Anaerobic oxidation of methane is considered to be a very important process reducing the emission of the greenhouse gas methane from the ocean into the atmosphere. It is estimated that almost 90% of all the methane that arises from marine sediments is oxidized anaerobically by this process. Aerobic ammoniaoxidizer, the oxidation of ammonia to hydroxylamine, is catalyzed by ammonia mono- oxygenase, subsequently to NO-2  catalyzed by hydroxylamine oxidoreductase. Anammox, a new process of anaerobic ammonium oxidation, combines ammonia and nitrite directly into N2 gas. This reaction is carried out by anammox bacteria belonging to the planctomycete group. The anammox reaction can be represented as NH+4 + NO-2=N2+ 2H2O .
It is important for understanding the biogeochemical cycle to explore the microbial distribution and community structure and so on. At present, traditional cultivation-dependent methods help us understand the culturable microorganisms. Most microorganisms need molecular ecological methods to detect due to the uncultured. These methods include Phospholipids Fatty Acids, Amplified Ribosomal DNA Restriction Analysis, Restriction Fragment Length Polymorphism, Terminal Restriction Fragment Length Polymorphism, Random Amplification Polymorphism DNA, Single Strand Conformation Polymorphism, Denatured Gradient Gel Electrophoresis, Fluorescent in Situ Hybridization, PLFA-based SIP, DNA-based SIP, RNA-based SIP, Pyro-sequencing, PhyloChipTM, GeochipTM and so on. But the traditional methods are still important for researchers to sequence the whole genome of the culturable microorganisms and to deeply explore the similar microorganism group, such as sequencing the genome of Candidatus “Nitrosopumilus maritimus” strain SCM1 and Methylococcus capsulatus.
In this review, we discuss microbial mechanisms of the methaneand ammonia-oxidation processes; normally molecular methods for understanding these functional groups; the roles and significance of methane-oxidizer in the carbon cycle and controlling the greenhouse gas emission; the roles and significance of ammonia-oxidizer in the nitrogen cycle and controlling the greenhouse gas emission. Finally, We illuminate the common scientific problems facing in the methane-and ammonia-oxidizer studies.

中图分类号: 

[1]Bhatia A, Pathak H, Jain N, et al. Global warming potential of manure amended soils under rice-wheat system in the Indo-Gangetic plains[J]. Atmospheric Environment, 2005, 39(37): 6 976-6 984.
[2]Hanson Al, Swanson Lee, Ewing D, et al. Wetland Ecologial Functions Assessment: An Overview of Approches[R]. Atlantic Region,Canadian Wildlife Service Technical Report Series No.497,59,2008.
[3]Hartman W, Richardson C, Vilgalys R, et al. Environmental and anthropogenic controls over bacterial communities in wetland soils [J]. PNAS, 2008,105(46): 17 842-17 847.
[4]Ishii S, Ohno H, Tsuboi M, et al. Identification and isolation of active N2O reducers in rice paddy soil [J]. The ISME Journal, 2011,doi:10.1038/ismej.2011.69.
[5]Liang Zhanbei, Shi Yi, Yue Jin. Advances in the research of methanotroph[J].Chinese Journal of Ecology,2004,23(5):198-205.[梁战备,史奕,岳进.甲烷氧化菌研究进展[J].生态学杂志,2004,23(5):198-205.]
[6]Dedysh S N, Derakshani M. Detection and enumeration of methanotrophs in acidic Sphagnum peat by 16S rRNA fluorescence in situ hybridization, including the use of a newly developed oligonucleotide probe for Methylocella palustris[J]. Applied and  Environmental Microbiology, 2001,67(10):4 850-4 857.
[7]Murrel J C, Gilbert B. Molecular biology and regulation of methane monooxygenase[J]. Archives Microbiology, 2000,173(5/6): 325-332.
[8]Reeburgh W S. Methane consumption in Cariaco Trench waters and sediments[J].Earth Planetary Science Letters,1976, 28: 337-344.
[9]Marc S, Arjan P. A microbial consortium couples anaerobic methane oxidation to denitrification [J].Nature, 2006,440(7 086):918-921.
[10]Leininger S,Urich T,Schloter M, et al. Archaea predominate among ammonia-oxidizing prokaryotes in soils[J]. Nature, 2006, 442(7 104): 806-809.
[11]You J, Das A, Dolan E M, et al. Ammonia-oxidizing archaea involved in nitrogen removal[J].Water Research, 2009,43(7): 1 801-1 809.
[12]Junier P, Molina V, Dorador C, et al. Phylogenetic and functional marker genes to study Ammonia-Oxidizing Microorganisms (AOM) in the environment [J].Applied Microbiology Biotechnology, 2010,85(3):425-440.
[13]Horz H P, Rotthauwe J H, Lukow T, et al. Identification of major subgroups of ammonia-oxidizing bacteria in environmental samples by T-RFLP analysis of amoA PCR products[J]. Journal of Microbiological Methods,2000,39(3): 197-204.
[14]Treusch A H, Leininge S, Kletzin A, et al. Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling [J]. Environmental Microbiology,2005,7(12):1 985-1 995.
[15]Venter J C, Remington K, Heidelberg J F, et al. Environmental genome shotgun sequencing of the Sargasso Sea[J]. Science, 2004, 304(5 667):66-74.
[16]Könneke M, Bernhard A E, Torre J R, et al. Isolation of an autotrophic ammonia-oxidizing marine archaeon[J]. Nature, 2005,437(7 058): 543-546.
[17]Mulder A, Vandegraaf A A, Robertson L A, et al. Anaerobic ammonium oxidation discovered in a denitrifying fluidized-bed reactor[J]. FEMS Microbiology Ecology, 1995,16(3):177-183.
[18]Schmidt I, Sliekers O, Schmid M, et al. Aerobic and anaerobic ammonia oxidizing bacteria competitors or natural partners? [J]. FEMS Microbiology Ecology, 2002, 39(3):175-181.
[19]de la Torre J R, Walker C B, Ingalls A E, et al.Cultivation of a thermophilic ammonia oxidizing archaeon synthesizing crenarchaeol[J]. Environmental Microbiology,2008, 10(3):810-818.
[20]Hatzenpichler R, Lebedeva E V, Spieck E, et al. A moderately thermophilic ammonia-oxidizing crenarchaeote from a hot spring[J]. PNAS, 2008, 105(6): 2 134-2 139.
[21]Tournaa M, Stieglmeiera M, Spanga A, et al. Nitrososphaera viennensis, an ammonia oxidizing archaeon from soil[J].PNAS, 2011, 108(20):8 420-8 425.
[22]Lehtovirta-Morleya L E, Stoecker K, Vilcinskas A, et al. Cultivation of an obligate acidophilic ammonia oxidizer from a nitrifying acid soil [J]. PNAS, 2011,108(38): 15 892-15 897.
[23]Walker C B, de la Torrea J R, Klotzc M G, et al. Nitrosopumilus maritimus genome reveals unique mechanisms for nitrification and autotrophy in globally distributed marine crenarchaea [J].PNAS,2010, 107(19): 8 818-8 823.
[24]Ward N, Larsen, Sakwa J, et al. Genomic insights into methanotrophy: The complete genome sequence of Methylococcus capsulatus (Bath) [J].PLoS Biology,2004, 2(10):e303.
[25]Rittmann B E, Krajmalnik-Brown R, Halden R U. Pre-genomic, genomic and post-genomic study of microbial communities involved in bioenergy[J].Nature Reviews Microbiology,2008,6(8):604-612.
[26]Qiu Q F, Noll M, Abraham W R, et al.Applying stable isotope probing of phospholipid fatty acids and rRNA in a Chinese rice field to study activity and composition of the methanotrophic bacterial communities in situ[J].The ISME Journal, 2008,2(6):602-614.
[27]Bodelier P L E,Meima-Franke M,Zwart G,et al.New DGGE strategies for the analyses of methanotrophic microbial communities using different combinations of existing 16S rRNA-based primers[J].FEMS Microbiology Ecology,2005,52(2):163-174.
[28]Kip N, Dutilh B E, Pan Y, et al. Ultra-deep pyrosequencing of pmoA amplicons confirms the prevalence of Methylomonas and Methylocystis in Sphagnum mosses from a Dutch peat bog[J]. Environmental Microbiology Reports, 2011,3(6):667-673.
[29]Chen X P,Zhu Y G, Xia Y, et al.Ammonia-oxidizing archaea: Important players in paddy rhizosphere soil[J]. Environmental Microbiology,2008, 10(8):1 978-1 987.[30]Khalil M A K. Atmospheric Methane: Its Role in the Global Environment[M].Berlin: Springer, 2000:1-8.
[31]Ding W X, Cai Z C, Wang D X.Preliminary budget of methane emissions from natural wetlands in China[J]. Atmospheric Environment,2004,38(5):751-759.
[32]Ye Yong,Lu Changyi,Lin Peng. Seasonal and spatial changes of methane emissions from mangrove wetlands in Hainan Island and Xiamen[J].Chinese Journal of Atmospheric Sciences,2000,24(2):152-156.[叶勇,卢昌义,林鹏.海南岛和厦门红树林湿地CH4排放的时空变化[J].大气科学,2000,24(2):152-156.]
[33]Jin Huijun, Wu Jie, Cheng Guodong, et al. Assessment of CH4 emissions in the Tibetan Plateau wetlands[J]. Chinese Science Bulletin,1999, 44(16):1 758-1 762.[金会军,吴杰,程国栋,等.青藏高原湿地CH4排放评估[J].科学通报,1999,44(16):1 758-1 762.]
[34]Duan Xiaonan, Wang Xiaoke, Chen Lin, et al. Methane emission from aquatic vegetation zones of Wuliangsu Lake, Inner Mongolia[J]. Environmental Science,2007,28(3):455-459. [段晓男,王效科,陈琳,等.乌梁素海湖泊湿地植物区甲烷排放规律[J].环境科学,2007,28(3):455-459.]
[35]Peter F D, Anton Y, Pavel S, et al. Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia [J].Nature,2007,450(7 171):879-882.
[36]Hanson R S, Hanson T E. Methanotrophic bacteria[J]. Microbiology and Molecular Biology Reveviews,1996,60(2):439-471.
[37]Chen Zhongyun, Min Hang, Wu Weixiang, et al.Studies on the population of methane-oxidizing bacteria and methane-oxidizing activity in Huangsong rice-field soil[J]. Journal of Zhejiang University (Agriculture & Life Sciences),2001, 27(5):546-550. [陈中云,闵航,吴伟祥,等.土壤中甲烷氧化菌种群数量及其与甲烷氧化活性的关系[J].浙江大学学报:农业与生命科学版,2001, 27(5):546-550.]
[38]Han Bing, Su Tao, Li Xin, et al.Research progresses of methanotrophs and methane monooxygenases[J]. Chinese Journal of Biotechnology,2008,24(9):1 511-1 519.[韩冰,苏涛,李信,等.甲烷氧化菌及甲烷单加氧酶的研究进展[J].生物工程学报,2008,24(9): 1 511-1 519.]
[39]Prinn R G. The interactive atmosphere: Global atmospheric- biospheric chemistry[J]. Integrating Earth System Science,1994, 23(1):50-61.
[40]Di H J, Cameron K C, Shen J P, et al. Nitrification driven by bacteria and not archaea in nitrogen-rich grassland soils[J]. Nature Geoscience Letters,2009,2(9):621-624.
[41]Lam P, Jensen M M,Lavik G, et al. Linking crenarchaeal and bacterial nitrification to anammox in the Black Sea[J]. PNAS, 2007,104(17): 7 104-7 109.
[42]Blackmer A M, Bremner J M, Schmidt E L. Production of nitrous oxide by ammonia-oxidizing chemoautotrophic microorganisms in soil[J]. Applied Environmental Microbiology,1980,40(6):1 060-1 066.
[43]Jiang Q Q, Bakken L R. Nitrous oxide production and methane oxidation by different ammonia-oxidizing bacteria[J]. Applied and Environmental Microbiology,1999,65(6):2 679-2 684.
[44]Purkhold U, Pommerening-Roser A, Juretschko S, et al. Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: Implications for molecular diversity surveys [J]. Applied and Environmental Microbiology, 2000, 66(12):5 368-5 382.
[45]Prosser J I, Nicol G W. Relative contribution of archaea and bacteria to aerobic ammonia oxidation in the environmental[J]. Environmental Microbiology,2008,10(11):2 931-2 941.
[46]Wuchter C, Abbas B, Coolen M J L, et al. Archaeal nitrification in the ocean [J]. PNAS,2006,103(33):12 317-12 322.
[47]Beman J M, Popp B N, Francis C A. Molecular and biogeochemical evidence for ammonia oxidation by marine Crenarchaeota in the Gulf of California[J].The ISME Journal, 2008,2(4):429-441.
[48]Santoro A E, Francis C A,De-Sieyes N R, et al. Shifts in the relative abundance of ammonia-oxidizing bacteria and archaea across physicochemical gradients in a subterranean estuary[J]. Environmental Microbiology,2008,10(4):1 068-1 079.
[49]Tourna M, Freitag T E, Nicol G W, et al. activity and temperature responses of ammonia-oxidizing archaea and bacteria in soil microcosms[J]. Environmental Microbiology,2008, 10(5):1 357-1 364.
[JP2][50]Park H D, Wells G F, Bae H, et al. Occurrence of ammonia- oxidizing archaea in wastewater treatment plant bioreactors[J]. Applied and Environmental Microbiology,2006,72(8):5 643-5 647.
[51]He Jizheng, Zhang Limei. Advances in ammonia-oxidizing microorganisms and global nitrogen cycle[J].Actaied Ecologica Sinica,2009,29(1):406-415.[贺纪正,张丽梅.氨氧化微生物生态学与氮循环研究进展[J].生态学报,2009,29(1):406-415.]
[52]Kuypers M M M, Sliekers A O, Lavik G, et al. Anaerobic ammonium oxidation by anammox bacteria in the Black Sea[J]. Nature,2003,422(6 932):608-611.
[53]Shu Qinglong, Jiao Nianzhi, Tang Kunxian. Marine anaerobic ammonium oxidizing bacteria Molecular Ecology research [J]. Journal of Microbiology, 2009, 36(11): 1 758-1 765.[舒青龙,焦念志,汤坤贤. 海洋厌氧氨氧化细菌分子生态学研究进展[J]. 微生物学通报, 2009, 36(11): 1 758-1 765.]
[54]Crowe S A, Canfield D E,Mucci A, et al. Anammox, denitrification and fixed-nitrogen removal in sediments of the Lower St. Lawrence Estuary[J].Biogeosciences Discussions, 2011, 8(5):9 503-9 534.
[55]Dirk V E, Bradley D E, Leigh D. The contribution of anammox and denitrification to sediment N2 production in a surface flow constructed wetland[J]. Environmental Science &  Technology, 2008, 42(24): 9 144-9 150.
[56]Thamdrup B, Dalsgaard T. Production of N2 through anaerobic ammonium oxidation coupled to nitrate reduction in marine sediments[J]. Applied and Environmental Microbiology, 2002, 68: 1 312-1 318.
[57]Xu Hui, Zhang Lu, Shang Jingge, et al. Meiliang Bay water interface denitrification and anaerobic ammonia oxidation.[J]. Journal of Lake Sciences, 2009, 21(6): 775-781.[徐徽,张路,商景阁,等.太湖梅梁湾水土界面反硝化和厌氧氨氧化[J].湖泊科学, 2009, 21(6): 775-781.]
[58]Chen Tingting, Zheng Ping, Hu Baolan. Species diversity and ecological distribution of anaerobic ammonium-oxidizing bacteria[J]. Chinese Journal of Applied Ecology,2009, 20(5):1 229-1 235.[陈婷婷,郑平,胡宝兰.厌氧氨氧化菌的物种多样性与生态分布[J].应用生态学报,2009,20(5):1 229-1 235.]
[59]Zu Bo, Zhang Daijun, Zhang Ping, et al. Factors affecting the integration of methanogenesis with simultaneous anaerobic ammonium oxidation and denitrification[J].Chinese Journal of Applied and Environmental  Biology, 2007,13(3): 438-442.[祖波,张代钧,张萍,等. 影响厌氧氨氧化与甲烷化反硝化耦合的因素[J].应用与环境生物学报, 2007,13(3):438-442.]
[60]Cao Jiashun, Zhou Wenli, Zhang Yutao, et al. Experimental study on anaerobic ammonia oxidation microorganism and integration of methanogenesis with denitrication[J]. Journal of Nanjing University of Science and Technology(Nature Science),2009, 33(4):538-542.[操家顺,周文理,张玉涛,等.厌氧氨氧化、反硝化与甲烷化耦合研究[J].南京理工大学学报:自然科学版,2009,33(4):538-542.]
[61]Strous M, Fuerst J A, Kramer E H M, et al. Missing lithotroph identified as new planctomycete[J].Nature, 1999,400(6 743):446-449.
[62]Schmid M, Twachtmann U, Klein M, et al. Molecular evidence for genus level diversity of bacteria capable of catalyzing anaerobic ammonium oxidation[J]. Systematic and Applied Microbiology,2000,23(1):93-106.
[63]Hu B L, Zheng P, Guan L L. Isolation,identification & characteristics of ammonia-oxidation bacteria from Anammox reactor[J]. Journal of Zhejiang University,2001,27(3):314-316.
[64]Shrestha N K, Hadano S, Kamachi T, et al. Dinitrogen production from ammonia by Nitrosomonas europaea [J].Applied Catalysis A: General, 2002,237(1/2):33-39.
[65]Schmid M, Walsh K, Webb R, et al. Candidatus “Scalindua brodae”, sp. Nov., Candidatus “Scalindua wagneri”, sp. Nov., two new species of anaerobic ammonium oxidizing bacteria[J]. Systematic and Applied Microbiology,2003,26(4):529-538.
[66]Kartal B,van Niftrik L, Sliekers O, et al. Application, eco-physiology and biodiversity of anaerobic ammonium-oxidizing bacteria[J]. Reviews in Environmental Science and Biotechnology,2004,3(3):255-264.
[67]Gong Z,Yang F,Liu S, et al. Feasibility of a membrane-aerated biofilm reactor to achieve single-stage autotrophic nitrogen removal based on Anammox[J]. Chemosphere,2007, 69(5):776-784.
[68]Quan Z X, Rhee S K, Zuo J E, et al. Diversity of ammonium- oxidizing bacteria in a granular sludge anaerobic ammonium oxidizing (Anammox) reactor[J]. Environmental Microbiology,2008, 10(11):3 130-3 139.
[69]Strous M, Jetten M S M. Anaerobic Oxidation of Methane and Ammonium[J]. Annual Review of Microbiology,2004,58:99-117.
[70]Holmes A J, Costello A. Evidence that particulate methane monooxygenase and ammonia monooxygenase may be evolutionarily related[J]. FEMS Microbiology Letters, 1995,132(3): 203-208.
[71]Bodelier P L, Frenzel E F. Contribution of methanotrophic and nitrifying bacteria to CH4 and NH+4 oxidation in the rhizosphere of rice plants as determined by new methods of discrimination[J]. Applied and Environmental  Microbiology, 1999,65(5):1 826-1 833.
[72]Bowman D G, Sly L I. The phylogenetic position of the family Methylococcaceae[J]. International Journal Systematic Bacteriology, 1995,45(1):182-185.
[73]Scheutz C, Kjeldsen P. Environmental factors influencing methane oxidation and co-oxidation of HCFCs in landfill cover soils[J]. Journal of Environmental Quality, 2004,33: 72-79.
[74]Castro M S, Peterjohn W T, Melillo J M, et al. Effects of nitrogen fertilization on the fluxes of N2O, CH4, and CO2 from soils in a Florida slash pine plantation [J]. Canadian Journal of Forest Research, 1994,24(1):9-13.
[75]Adamsen A P S, King G M. Methane consumption in temperate and subarctic forest soils:Rates, vertical zonation and response to water and nitrogen[J]. Applied and Environmental Microbiology, 1993,59(2):485-490.
[76]Wang Yunlong, Hao Yongjun, Wu Weixiang, et al. Research progress on methane oxidation in landfill cover soil[J]. Chinese Journal of Applied Ecology,2007,18(1):199-204.[王云龙,郝永俊,吴伟祥,等.填埋覆土甲烷氧化微生物及甲烷氧化作用机理研究进展[J].应用生态学报,2007,18(1):199-204.]
[77]Wang Zhiping, Hu Chunsheng, Yang Qirong. Effect of inorganic nitrogen on CH4 oxidation in soils[J]. Chinese Journal of Applied Ecology,2003, 14(2):305-309.[王智平,胡春胜,杨启荣.无机氮对土壤甲烷氧化作用的影响[J].应用生态学报,2003,14(2):305-309.]
[78]Hütsch B W. Methane oxidation in arable soil as inhibited by ammonium, nitrate, and organic manure with respect to soil pH [J]. Biology and Fertility of Soils, 1998,28(1):27-35.
[79]Gulledge J, Doyle A P, Schimel J P. Different NH+4-inhibition patterns of soil methane consumption: A result of distinct methane-oxidizer populations across sites?[J].Soil Biology and Biochemistry, 1997,29(1):13-21.
[80]Adamsen A P S, King G M. Methane consumption in temperate and subarctic forest soils: Rates, vertical zonation and response to water and nitrogen[J].Applied and Environmental Microbiology,1993,59(2): 485-490.
[81]Crill P M, Martikainen P J, Nykanen H, et al. Temperature and N fertilization effects on methane oxidation in a drained peatland soil[J]. Soil Biology Biochemistry,1994,26(10):1 331-1 339.
[82]Dunfield P F, Knowles R. Kinetics of  inhibition of methane oxidation by nitrate, and ammonium in a humisol[J]. Applied and Environmental Microbiology, 1995,61(8):3 129-3 135.
[83]Conrad R. Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO)[J]. Microbiology and Molecular Biology Reviews, 1996,60(4):609-640.
[84]Nesbit S P, Breitenbeck G A. A laboratory study of factors influencing methane uptake by soils [J]. Agricculture, Ecosystems &  Environment, 1992,41(1):39-54.
[85]Schnell S, King G M. Mechanistic analysis of ammonium inhibition of atmospheric methane consumption in forest soils[J]. Applied and Environmental Microbiology, 1994, 60(10):3 514-3 521.
[86]Hütsch B W. Methane oxidation in non-flooded soils as affected by crop production-invited paper [J]. European Journal of Agronomy, 2001,14(4):237-260.
[87]Reay D S, Radajewski S, Murrell J C, et al. Effects of land-use on the activity and diversity of methane oxidizing bacteria in forest soils[J]. Soil Biology and Biochemistry, 2001,3(12/13):1 613-1 623.

[1] 郑聚锋, 潘根兴, 程琨, 张旭辉. 从《IPCC 2006 国家温室气体排放清单增补:2013湿地》谈湿地温室气体计量进展及问题[J]. 地球科学进展, 2014, 29(10): 1120-1125.
[2] 张介霞, 詹力扬, 陈立奇. 南大洋N 2O研究进展及测量新技术展望 *[J]. 地球科学进展, 2013, 28(11): 1201-1208.
[3] 张茂亮,郭正府,成智慧,张丽红,郭文峰. 火山区温室气体排放研究进展[J]. 地球科学进展, 2011, 26(12): 1235-1247.
[4] 曾静静,曲建升,张志强. 国际温室气体减排情景方案比较分析[J]. 地球科学进展, 2009, 24(4): 436-443.
[5] 胡永云,丁 峰,夏 炎. 全球变化条件下的平流层大气长期变化趋势[J]. 地球科学进展, 2009, 24(3): 242-251.
[6] 曲建升,曾静静,张志强. 国际主要温室气体排放数据集比较分析研究[J]. 地球科学进展, 2008, 23(1): 47-54.
[7] 李迎春,林而达,甄晓林. 农业温室气体清单方法研究最新进展[J]. 地球科学进展, 2007, 22(10): 1076-1080.
[8] 胡永云;闻新宇. 冰雪地球的研究进展综述[J]. 地球科学进展, 2005, 20(11): 1226-1233.
[9] 曲建升;孙成权. 温室气体减排:过去,现在与未来———俄罗斯批准《京都议定书》使国际气候行动出现新转折[J]. 地球科学进展, 2004, 19(6): 1052-1053.
[10] 刘强;王跃思;王明星. 北京地区大气主要温室气体的季节变化[J]. 地球科学进展, 2004, 19(5): 817-823.
[11] 王宁练;姚檀栋;邵雪梅. 温室气体与气候:过去变化对未来的启示[J]. 地球科学进展, 2001, 16(6): 821-828.
[12] 刘 强,刘嘉麒,贺怀宇. 温室气体浓度变化及其源与汇研究进展[J]. 地球科学进展, 2000, 15(4): 453-460.
[13] 李玉娥,林而达. 土壤甲烷吸收汇研究进展[J]. 地球科学进展, 1999, 14(6): 613-618.
[14] 李玉娥,林而达. 土壤甲烷吸收汇研究进展[J]. 地球科学进展, 1999, 14(6): 613-618.
[15] 郭李萍,林而达. 减缓全球变暖与温室气体吸收汇研究进展[J]. 地球科学进展, 1999, 14(4): 384-390.
阅读次数
全文


摘要