[1] Kerr R A. It’s official: humans are behind most of global warming [J]. Science, 2001, 291(5 504): 566. [2] Rind D. Climate change: just add water vapor [J]. Science, 1999, 281(5 380): 1 152-1 153. [3] Wang Ninglian, Yao Tandong, Shi Yafeng, et al. On the magnitude of temperature decrease in the equatorial regions during the Last Glacial Maximum[J]. Science in China (D), 1999, 42(supp.1): 80~90. [王宁练, 姚檀栋, 施雅风, 等. 末次冰盛期时赤道地区的降温幅度问题[J]. 中国科学(D), 1999, 29(增1): 70-78.] [4] Evans S J, Toumi R, Harries J E, et al. Trends in stratospheric humidity and the sensitivity of ozone to these trends [J]. Journal of Geophysical Research, 1998, 103(D8): 8 715-8 725. [5] Mann M E, Bradley R S, Hughes M K. Global-scale temperature patterns and climate forcing over the past six centuries [J]. Nature, 1998, 392(6 678): 779-787. [6] Bradley R. 1000 years of climate change [J]. Science, 2000, 288(5 470): 1 353-1 355. [7] Johnsen S J, Clausen H B, Dansgaard W, et al. Irregular glacial interstadials recorded in a new Greenland ice core [J]. Nature, 1992, 359(6 393): 311-313. [8] Grootes P M, Stuiver M, White J W C, et al. Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores [J]. Nature, 1993, 366: 552-554.[9] Dansgaard W, Johnsen S, Clausen H, et al. Evidence for a general instability of the past climat from a 250 kyr ice core record [J]. Nature, 1993, 364(6 434): 218-220. [10] Taylor K C, Lamorey G W, Doyle G A, et al. The “flickering switch” of late Pleistocene climate change [J]. Nature, 1993, 361: 432-436. [11] Yao Tandong. Abrupt climatic changes on the Tibetan Plateau during the Last Ice Age [J]. Science in China(D), 1999, 42(4): 358-368. [姚檀栋. 末次冰期青藏高原的气候突变[J]. 中国科学(D), 1999, 29(2): 175-184.] [12] Lang C, Leuenberger M, Schwander J, et al. 16℃ rapid temperature variation in Central Greenland 70,000 years ago [J]. Science, 1999, 286(5 441): 934-937. [13] Ramanathan V. Greenhouse effect due to chlorofluorocarbons: climatic implications [J]. Science, 1975, 190: 50-52. [14] Sturges W T, Wallington T J, Hurley M D, et al. A Potent greenhouse gas identified in the atmosphere: SF5CF3 [J]. Science, 2000, 289(5 493): 611-613. [15] Wang W C, Yung Y L, Lacis A A, et al. Greenhouse effects due to man-made perturbations of trace gases [J]. Science, 1976, 194(4 266): 685-690. [16] Ramanathan V, Cicerone R J, Singh H B, et al. Trace gas trends and their potential role in climate change [J]. Journal of Geophysical Research, 1985, 90(D3): 5 547-5 566. [17] Hansen J E, Lacis A, Lebedeff S A. Commentary on climatic effects of minor atmospheric constituents [A]. In: Clark W C, ed. Carbon Dioxide Review [C]. New York: Clarendon Press, 1982. 284-286. [18] Hansen J, Lacis A and Prather M. Greenhouse effect of Chlorofluorocarbons and other trace gases [J]. Journal of Geophysical Research, 1989, 94(D13): 16 417-16 421. [19] Houghton J T, Meira Filho L G, Callander B A, et al. Climate Change 1995: the Science of Climate Change [M]. Cambridge: Cambridge University Press, 1996. 1-572. [20] Mann M E. Lessons for a new millennium [J]. Science, 2000, 289(5477): 253-254. [21] Rind G C. Influence of solar variability on global sea surface temperatures [J]. Nature, 1987, 329: 142-143. [22] Friis-Christensen E, Lassen K. Length of the solar cycle: an indicator of solar activity closely associated with climate [J]. Science, 1991, 254(5032): 698-700. [23] Hoyt D V, Schatten K H. The Role of the Sun in Climate Change [M]. Oxford: Oxford University Press, 1997. 1-279. [24] Baliunas S, Soon W. Are variations in the length of the activity cycle related to changes in brightness in solar-type stars? [J]. Astrophysical Journal, 1995, 450(4): 896-901. [25] Solanki S K, Fligge. Solar irradiance since 1874 revisited [J]. Geophysical Research Letters, 1998, 25(3): 341-344. [26] Cliver E W, Boriakoff V. Solar variability and climate change: Geomagnetic aa index and global surface temperature [J]. Geophysical Research Letters, 1998, 25(7): 1 035-1 038. [27] Lean J. Variations in the Sun's radiative output [J]. Reviews of Geophysics and Space Physics, 1991, 29(3): 505-535. [28] Haigh J D. The impact of solar variability on climate [J]. Science, 1996, 272(5 264): 981-984. [29] Ney E R. Cosmic radiation and the weather [J]. Nature, 1959, 183(4 659): 451-452. [30] Svensmark H, Friss-Christensen E. Variation of cosmic ray flux and global cloud coverage—a missing link in solar-climate relationships [J]. Journal of Atmospheric and Solar-Terrestrial Physics, 1997, 59(11): 1 225-1 232. [31] Kelly P M, Wigley T M L. Solar cycle length, greenhouse forcing and global climate [J]. Nature, 1992, 360(6 402): 328-330. [32] Schlesinger M E, Ramankutty N. Implications for global warming of solar irradiance variations [J]. Nature, 1992, 360(6 402): 330-333. [33] Thompson D J. Dependence of global temperatures on atmospheric CO2 and solar irradiance [J]. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94: 8 370-8 377. [34] Lean J, Beer J, Bradley R. Reconstruction of solar irradiance since 1610: implications for climate change [J]. Geophysical Research Letters, 1995, 22(23): 3 195-3 198. [35] Crowley T J, Kim K Y. Comparison of proxy records of climate change and solar forcing [J]. Geophysical Research Letters, 1996, 23(4): 359-362. [36] Tett S F B, Stott P A, Allen M R, et al. Causes of twentieth-century temperature change near the Earth's surface [J]. Nature, 1999, 399(6 736): 569-572. [37] Shindell D T, Miller R L, Schmidt G A, et al. Simulation of recent northern winter climate trends by greenhouse-gas forcing [J]. Nature, 1999, 399(6 735): 452-455.[38] Andronova N G, Schlesinger M E. Causes of global temperature changes during the 19th and 20th centuries [J]. Geophysical Research Letters, 2000, 27(14): 2 137-2 140. [39] Crowley T J. Causes of climate change over the past 1 000 years [J]. Science, 2000, 289(5 477): 270-277. [40] Zwiers F W, Weaver A J. The causes of 20th century warming [J]. Science, 2000, 290(5 499): 2 081-2 083. [41] Stott P A, Tett S F B, Jones G S, et al. External control of 20th century temperature by natural and anthropogenic forcings [J]. Science, 2000, 290(5 499): 2 133-2 137. [42] O'Brien S R, Mayewski P A, Meeker L D, et al. Complexity of Holocene climate as reconstructed from a Greenland ice core [J]. Science, 1995, 270(5 244): 1 962-1 964. [43] Bond G, Showers W, Cheseby M, et al. A pervasive millennial-scale cycle in North Atlantic Holocene and Glacial climates [J]. Science, 1997, 278( 5 341): 1 257-1 266. [44] Bianchi G G, McCave I N. Holocene periodicity in North Atlantic climate and deep-ocean flow south of Iceland [J]. Nature, 1999, 397(6 719): 515-517. [45] Kerr R A. The Little Ice Age—only the latest big chill [J]. Science, 1999, 284(5 423): 2069. [46] Petit J R, Jouzel J, Raunaud D, et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica [J]. Nature, 1999, 399(6 735): 429-436. [47] Fisher H, Wahlen M, Smith J, et al. Ice core records of atmospheric CO2 around the last three glacial terminations [J]. Science, 1999, 283(5 408): 1 712-1 714. [48] Loutre M F, Berger A. No glacial-interglacial cycle in the ice volume simulated under a constant astronomical forcing and a variable CO2 [J]. Geophysical Research Letters, 2000, 27(6): 783-786. [49] Steig E J. Mid-Holocene climate change [J]. Science, 1999, 286(5 444): 1 485. [50] Severinghaus J P, Brook E J. Abrupt climate change at the end of the last glacial period inferred from trapped air in polar ice [J]. Science, 1999, 286(5 441): 930-934. [51] Raynaud D, Jouzel J, Barnola J M, et al. The ice record of greenhouse gases [J]. Science, 1993, 259(5 097): 926-933. [52] Anklin M, Schwander J, Stauffer B, et al. CO2 record between 40 and 8 ka BP from the Greenland ice core project ice core [J]. Journal of geophysical Research, 1997, 102(C12): 26 539-26 545. [53] Chappellaz J, Blunier T, Ratnaud D, et al. Synchronous changes in atmospheric CH4 and Greenland climate between 40 and 8 kyr BP [J]. Nature, 1993, 366: 443-445. [54] Blunier T, Schwander J, Stauffer B, et al. Timing of the Antarctic cold reversal and the atmospheric CO2 increase with respect to the Younger Dryas event [J]. Geophysical Research Letters, 1997, 24(21): 2 683-2 686. [55] Jouzel J, Petit J R, Barkov N I, et al. The last deglaciation in Antarctica: further evidence of a Younger Dryas type climatic event [A]. In: Bard E, Broecker W S, eds. The Last Deglaciation: Absolute and Radiocarbon Chronologies[C]. Berlin: Springer-Verlag, 1990. 229-266. [56] Sower T, Bender M. Climate records covering the last deglaciation [J]. Science, 1995, 269: 210-214. [57] White J W C, Ciais P, Figge R A, et al. A high-resolution record of atmospheric CO2 content from carbon isotopes in peat [J]. Nature, 1994, 367(6 459): 153-155.[58] Crowley T J. Remembrance of things past: greenhouse lessons from the geological record [J]. Conesquences, 1996, 2(1): 23-31. [59] Herbert T D. A long marine history of carbon cycle modulation by orbital-climatic changes [A]. In: Proceedings of the Natinal Academy of Sciences of the United States of America[C]. 1997, 94: 8 362-8 369. [60] Barron E J. A warm, equable Cretaceous: the nature of the problem [J]. Earth Science Reviews, 1983, 19(2): 305-338. [61] Berner R A. Paleo-CO2 and climate [J]. Nature, 1992, 358(6 382): 114. [62] Pearson P N, Palmer M R. Middle Eocene seawater pH and atmospheric carbon dioxide concentrations [J]. Science, 1999, 284(5 421): 1 824-1 826. [63] Pagani M, Arthur M A, Freeman K H. Miocene evolution of atmospheric carbon dioxide [J]. Paleoceanography, 1999, 14(3): 273-292. [64] Flower B P. Warming without high CO2? [J]. Nature, 1999, 399(6 734): 313-314. [65] Veizer J, Godderis Y, Fracois L M. Evidence for decoupling of atmospheric CO2 and global climate during the Phanerozoic eon [J]. Nature, 2000, 408: 698~701.[66] Kerr R A. Slide into ice ages not carbon dioxide's fault? [J]. Science, 1999, 284(5 421): 1 743~1 746. [67] Kerr R A. The sun again intrudes on Earth's decadal climate change [J]. Science, 2000, 288(5 473): 1986. [68] Kerr R A. Warming's unpleasant surprise: shivering in the Greenhouse? [J]. Science, 1998, 281(5 374): 156-158. [69] Yao Tandong, Jiao Keqin, Huang Cuilan, et al. Environmental records in ice cores and their spatial coupling features [J]. Quaternary Science, 1995, 15(1): 23-31. [姚檀栋, 焦克勤, 皇翠兰, 等. 冰芯所记录的环境变化及空间耦合特征[J]. 第四纪研究, 1995, 15(1): 23-31.] [70] Zhang Deer. Preliminary study on synoptic climatology of historical dust in China [J]. Science in China (B), 1984, 14(3): 278-288. [张德二. 我国自历史时期以来降尘的天气气候学初步分析[J]. 中国科学(B), 1984, 14(3): 278-288.] [71] Yao Tandong, Qin Dahe, Huang Cuilan, et al. The main cations and environmental changes in Guliya ice core since the Little Ice Age [A]. In: Annual Report of the Study on the Formation, Evolution, Environmental Changes and Ecosystem of the Qinghai-Tibet Plateau, 1994 [C]. Beijing: Science in China Press, 1995. 1-10. [姚檀栋, 秦大河, 皇翠兰, 等. 古里雅冰芯中的主要阳离子与小冰期以来的环境变化[A]. 见:青藏项目专家委员会编.青藏高原形成演化、环境变迁与生态系统研究学术论文年刊(1994) [C]. 北京: 科学出版社, 1995. 1-10.] |