地球科学进展 ›› 2009, Vol. 24 ›› Issue (3): 242 -251. doi: 10.11867/j.issn.1001-8166.2009.03.0242

“平流层过程及其对东亚天气气候的作用”专辑 上一篇    下一篇

全球变化条件下的平流层大气长期变化趋势
胡永云,丁 峰,夏 炎   
  1. 北京大学物理学院大气科学系,北京 10087
  • 收稿日期:2009-01-19 修回日期:2009-02-21 出版日期:2009-03-10
  • 通讯作者: 胡永云 E-mail:yyhu@pku.edu.cn
  • 基金资助:

    国家自然科学基金面上项目“哈德雷环流强度和宽度的年代际变化”(编号:40875042);国家自然科学基金重点项目“北极平流层异常对亚洲及北太平洋地区的天气气候影响研究”( 编号:40533016);教育部科学技术研究重点项目“冬季早期和晚期相反气候趋向的研究”( 编号:106002);教育部博士点基金项目“平流层异常对对流层天气系统的影响”( 编号:20070001002)资助.

Stratospheric Climate Trends under Conditions of Global Climate Changes

Hu Yongyun, Ding Feng, Xia Yan   

  1. Department of Atmospheric Sciences, School of Physics, Peking University, Beijing 100871, China
  • Received:2009-01-19 Revised:2009-02-21 Online:2009-03-10 Published:2009-03-10

两个因素将对21世纪平流层气候变化产生重要作用。一个是温室气体增加,另一个是平流层臭氧的可能恢复。温室气体增加的辐射效应一方面造成地面和对流层变暖,另一方面却导致平流层变冷,而臭氧层恢复的辐射效应则导致平流层变暖。在温室气体增加和臭氧恢复这两种相反因素作用下的平流层温度如何变化是所关心的主要问题。为了预估平流层温度在21世纪的变化,使用了辐射—对流模式进行了敏感性实验,另外,也对他人进行的化学—气候耦合模式(CCM)模拟结果进行了分析。这些模拟结果表明,在21世纪平流层中上层(60~1 hPa)将变冷,而下层(150~60 hPa)变暖。这说明在平流层中上层温室气体的冷却效应将起主导作用,而臭氧恢复的加热效应在平流层下层相对更为重要。CCM的模拟结果表明,臭氧恢复最显著的区域在平流层上层(3 hPa附近),与最大降温区一致,说明温室气体增加将有利于平流层上层臭氧恢复。CCM的模拟结果还表明,平流层两极地区在冬半年存在变暖的现象。根据已有的研究结果,极区变暖与平流层行星波活动增强有关,动力、热力和化学之间的正反馈作用也有可能对极区变暖有重要的贡献。

     There are two factors which will play the key roles in stratospheric climate changes in the 21st century. One is increasing greenhouse gases, and the other one is the likely recovery of stratospheric ozone. The radiative effect of increasing greenhouse gases causes warming on the surface and in the troposphere, but cooling in the stratosphere, whereas the recovery of the ozone layer will cause stratospheric warming. How stratospheric temperatures will be changed by the two opposite effects is the main interest in the present study. In order to explore changes in stratospheric temperatures, we carry out sensitivity simulations using a radiative-convective equilibrium model, and we also analyze simulation results from coupled chemistry-climate models (CCM). Our results show cooling trends in the middle and upper stratosphere (60~1 hPa) and warming in the lower layers (150~60 hPa). These suggest that the cooling effect of increasing greenhouse gases is more important in the middle and upper stratosphere, while the warming effect of ozone recovery plays the major role in the lower stratosphere. CCM simulations show that the maximum ozone increase is in the upper stratosphere (about 3 hPa), which matches the layer of maximum cooling trends, suggesting that increasing greenhouse gases will benefit stratospheric ozone recovery. CCM simulations also show warming trends in stratospheric polar regions in the winter half-year for both hemispheres. According to previous studies, the polar warming is due to increasing planetary wave activity in the stratosphere. In addition, feedbacks among dynamical, thermal and chemical processes may also contribute the polar warming.

中图分类号: 

[1] Baldwin M P, Dameris M, Shepherd T G. How Will the Stratosphere Affect Climate Change?[J].Science, 2007,316:1 576-1 577.[2] IPCC. The Physical Basis, in Climate Change 2007[M].Cambridge:Cambridge University Press,2007.
[3] Solomon S. Stratospheric ozone depletion: A review of concepts and history[J].Reviews of Geophysics,1999, 37: 275-316.
[4] Ramaswamy V, Chanin M L, Angell J, et al. Stratospheric temperature trends: Observations and model simulations[J].Reviews of Geophysics,2001,39: 71-122.
[5] Weatherhead E C, Andersen S B. The search for signs of recovery of the ozone layer[J].Nature,2006, 441:39-45.
[6] WMO (World Meteorological Organization). Scientific Assessment of Ozone Depletion: 2006, Global Ozone Research and Monitoring Project-Report No.50[R]. Geneva, Switzerland,2007.
[7] Hu Yongyun, Xia Yan, Gao Mei, et al. Stratospheric temperature changes and ozone recovery in the 21st century[J].Acta Meteorological Sinica,2009 (in press).[胡永云,夏炎,高梅,等. 21世纪平流层温度变化和臭氧恢复[J].气象学报,2009(待刊).]
[8] Eyring V,Butchart N, Waugh D W,et al. Assessment of temperature, trace species, and ozone in chemistry-climate model simulations of the recent past[J].Journal of Geophysical Research,2006, 111: D22308, doi: 10.1029/2006JD007327.
[9] Bodeker G E, Waugh D. The Ozone Layer in the 21st Century[C]//World Meteorological Organization, Chapter 6. Scientific Assessment of Ozone Depletion: 2006, Global Ozone Research and Monitoring Project-Report No. 50.Geneva,Switzerland, 2007.
[10] Andrews D G, Holton J R, Leovy C B. Middle Atmosphere Dynamics[M].New York: Academic Press, 1987.
[11] Shindell D T, Miller R L, Schmidt G A, et al. Simulation of recent northern climate trends by greenhouse-gas forcing[J].Nature, 1999,399: 452-455.
[12] Eichelberger S J, Hartmann D L. Changes in the strength of the Brewer-Dobson circulation in a simple AGCM[J].Geophysical Research Letters,2005, 32,L15807, doi:10.1029/2005GL022924.
[13] Butchart N, Scaife A A, Bourgui M,et al. Simulations of anthropogenic change in the strength of the Brewer Dobson circulation[J].Climate Dynamics,2006,27:727-741.
[14] Hu Y, Tung K, Liu J. A closer comparison of early and late winter atmospheric trends in the Northern-Hemisphere[J].Journal of Climate,2005,18: 2 924-2 936.
[15] Hu Yongyun, Zhu Jinkui, Liu Jiping. Antarctic stratospheric warming since 1979[J].Acta Meteorological Sinica,2007,65:773-783.[胡永云,朱金奎,刘骥平. 1979年以来南极平流层冬季变暖[J].气象学报,2007,65: 773-783.]
[16] Ricchiazzi P, Yang S, Gautier C, et al. SBDART: A research and teaching software tool for plane-parallel radiative transfer in the Earth′s atmosphere[J].Bulletin of the American Metorological Society,1998,79(10): 2 101-2 114.
[17] Manabe S, Wetherald R T. Theral equilibrium of the atmosphere with a given distribution of relative humidity[J].Journal of the Atmospheric Sciences,1967,24:241-254.
[18] Hartmann D L. Global Physical Climatology[M]. New York: Academic Press, 1994.
[19] Hu Y, Tung K K. Possible ozone induced long-term changes in planetary wave activity in late winter[J].Journal of Climate,2003,16: 3 027-3 038.
[20] Thompson D W J, Wallace J M, Hegerl G C. Annular modes in the extratropical circulation. Part II: Trends[J].Journal of Climate,2000,13: 1 018-1 036.[21] Hu Yongyun. Possible Impact of Stratospheric Polar Ozone Depletion on tropospheric climate[J].Acta Scientiarum Naturalium Universitatis Pekinensis,2006,42: 561-568.[胡永云. 平流层极地臭氧损耗影响对流层气候的研究进展[J]. 北京大学学报:自然科学版,2006,42:561-568.]

[1] 单薪蒙, 温家洪, 王军, 胡恒智. 深度不确定性下的灾害风险稳健决策方法评述[J]. 地球科学进展, 2021, 36(9): 911-921.
[2] 段伟利, 邹珊, 陈亚宁, 李稚, 方功焕. 18792015年巴尔喀什湖水位变化及其主要影响因素分析[J]. 地球科学进展, 2021, 36(9): 950-961.
[3] 王澄海, 张晟宁, 张飞民, 李课臣, 杨凯. 论全球变暖背景下中国西北地区降水增加问题[J]. 地球科学进展, 2021, 36(9): 980-989.
[4] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[5] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[6] 张子洋, 闫明, MULVANEY Robert, 季峻峰, 效存德, 刘雷保, 安春雷. 东南极 LGB69冰芯 17122001年气温变化记录的初步研究[J]. 地球科学进展, 2021, 36(2): 172-184.
[7] 崔林丽, 史军, 杜华强. 植被物候的遥感提取及其影响因素研究进展[J]. 地球科学进展, 2021, 36(1): 9-16.
[8] 龙上敏,刘秦玉,郑小童,程旭华,白学志,高臻. 南大洋海温长期变化研究进展[J]. 地球科学进展, 2020, 35(9): 962-977.
[9] 蔡运龙. 生态问题的社会经济检视[J]. 地球科学进展, 2020, 35(7): 742-749.
[10] 萧凌波. 17361911年华北饥荒的时空分布及其与气候、灾害、收成的关系[J]. 地球科学进展, 2020, 35(5): 478-487.
[11] 熊建国, 李有利, 张培震. 夷平面研究新进展[J]. 地球科学进展, 2020, 35(4): 378-388.
[12] 武登云, 任治坤, 吕红华, 刘金瑞, 哈广浩, 张弛, 朱孟浩. 冲积扇形态与沉积特征及其动力学控制因素:进展与展望[J]. 地球科学进展, 2020, 35(4): 389-403.
[13] 刘许柯,付云翀,周卫健,张丽,赵国庆. 宇宙成因核素 7Be10Be示踪大气垂直传输交换研究进展[J]. 地球科学进展, 2020, 35(10): 1016-1028.
[14] 胡利民,石学法,叶君,张钰莹. 北极东西伯利亚陆架沉积有机碳的源汇过程研究进展[J]. 地球科学进展, 2020, 35(10): 1073-1086.
[15] 王亚锋,芦晓明,朱海峰,梁尔源. 高山树线的调查与研究方法[J]. 地球科学进展, 2020, 35(1): 38-51.
阅读次数
全文


摘要