地球科学进展 ›› 2009, Vol. 24 ›› Issue (3): 252 -261. doi: 10.11867/j.issn.1001-8166.2009.03.0252

“平流层过程及其对东亚天气气候的作用”专辑 上一篇    下一篇

中层大气模式的应用及发展前景
田文寿,张 敏,舒建川   
  1. 兰州大学大气科学学院,甘肃 兰州 730000
  • 收稿日期:2009-01-19 修回日期:2009-02-22 出版日期:2009-03-10
  • 通讯作者: 田文寿 E-mail:wstian@lzu.edu.cn
  • 基金资助:

    国家自然科学基金重点项目“大气中水汽、气溶胶、臭氧在平流层与对流层之间传输和交换过程的研究”( 编号:40730949);国家自然科学基金面上项目“平流层水汽增加对平流层臭氧损耗的影响研究”(编号:40575019);教育部博士点基金项目“对流层水汽向平流层的传输过程研究”(编号:20060730022)资助.

The Applications and Future Development of Middle Atmosphere Models

Tian Wenshou, Zhang  Min, Shu Jianchuan   

  1. College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
  • Received:2009-01-19 Revised:2009-02-22 Online:2009-03-10 Published:2009-03-10

随着空间探测技术和计算机能力的不断提高,近年来中层大气模式得到了快速的发展。简要概述了中层大气模式的现状及其发展中存在的问题和挑战,同时也阐述了中层大气模式在近年来研究中的一些主要应用和未来的发展前景。目前,完备的基于大气环流模式的中层大气模式大多只包括了对流层和平流层大气,少量的模式可达到中间层和热层大气。这些现有的中层大气模式对平流层的化学过程和一些动力过程都具有了一定的模拟能力,如能较好地模拟出南极臭氧空洞及其时间演变以及热带平流层大气中的准两年和准半年振荡信号。但是不同模式模拟结果之间的差异仍然是显著的,现有的中层大气模式还需要进一步的发展和完善。改进模式的辐射传输方案和重力波参数化方案,实现大气化学过程、动力过程和微物理过程的充分耦合,改善平流层以上的大气化学过程和物理过程在模式中的描述是目前正在进行的工作。中层大气模式目前已开始被广泛应用于大气科学研究的各个方面,进一步发展和完善中层大气模式不仅对天气、气候预报具有重要的意义,对空间科学的研究来讲也是需要的。

     With the development of the space exploration technology and the increase of computer power, a series of numerical models for the middle atmosphere have been developed in recent years. In this paper, an informal brief survey of the current issues and challenges in the development of comprehensive middle and upper atmospheric models are presented and the current and future research applications of models for the middle atmosphere are discussed. At present, the middle atmosphere models developed from the state of art general circulation models typically have a domain extending from the ground up to stratosphere and the lower part of the mesosphere. Few such models have their model tops extending up to the thermosphere. The most existing models for the middle atmosphere have the ability of simulating reasonably the atmospheric chemical and dynamical processes in the stratosphere such as the time evolution of the Antarctic ozone hole and signals of Quasi-biennial Oscillation and semi-annual Oscillation in the equatorial stratosphere. However, uncertainties and differences in simulated results between models are still large. For the improvement of the middle atmosphere models, the radiation scheme and the gravity wave parameterisation scheme are the main focuses for physical processes, while the full coupling between atmospheric chemical and dynamical as well as micro-physical processes is another aspect of model development under way. Meanwhile, the description of chemical and physical processes above the stratosphere also needs improvement. The models for the middle atmosphere have wide applications in various atmospheric research fields. To further develop and improve such model is not only important for the weather and climate predictions but also useful for the research of the space science. 

中图分类号: 

[1] Labitzke, Austin John, Butchart Neal, et al. The global signal of the 11-year solar cycle in the stratosphere: Observations and models[J].Journal of Atmospheric and Solar-Terrestrial Physics, 2000,64: 203-210.
[2] Chanin M L. Signature of the 11-year cycle in the upper atmosphere[J].Space Science Reviews,2006,125:261-272, doi: 10.1007/s11214-006-9062-5.
[3] Tian W, Chipperfield M P.Stratospheric water vapor trends in a coupled chemistry-climate model[J].Geophysical Research Letters, 2006,33, L06819, doi:10.1029/2005GL024675.
[4] Thompson J, Wallace M. Annual models in the extratropical circulation. Part I: Month-to Month variability[J].Journal of Climate, 2000,13:1 000-1 016.
[5] Hampson J, Keckhut P, Hauchecorne A, et al. The 11-year solar cycle in the temperature in the upper stratosphere and mesisphere: Part II, numerical simulation and role of planatary waves[J].Journal of Atmospheric and Solar-Terrestrial Physics, 2006,67:948-958.
[6] Manabe S, Hunt B G. Experiments with a stratopsheric general circulation model[J].Monthly Weather Review, 1968, 96: 477-502.
[7] Kasahara A, Sasamori. Simulation experiments with a 12-layer stratospheric global circulation model. II: Momentum balance and energetics in the stratopshere[J].Journal of Atmospheric Science, 1974,31:408-421.
[8] Roble R G, Dickinson R E. How will changes in carbon dioxide and methane modify the mean structure of the mesisphere and thermalsphere?[J].Geophysical Research Letters,1989,16:1 441-1 444.
[9] Sassi F,Garcia R R. A one-dimentioanl model of semiannual oscilation driven by convectively forced gravity waves[J].Journal of Atmospheric Science,1994,51:2 818-2 833.
[10] Gunnold D M, Alyea F N, Phillips N, et al. A three-dimensional dynamical-chemical model of atmospheric ozone[J].Journal of Atmospheric Science,1974,32:170-194.
[11] Brasseur G,Hitchman M H, Walters S, et al. An interactive chemical dynamical radiative two-dimensional model of the middle atmosphere[J].Journal of Geophysical Research,1990,95:5 639-5 655.
[12] Dameris M, Berger U, Ebel A,et al. The ozone hole: dynamical consequences as simulated with a three-dimensional model of the middle atmosphere[J].Annales de Geophysique,1991,9:661-668.
[13] Summers M F, Siskind D E, Bacmeister J T,et al. Seasonal variation of middle atmopsheric CH4 and H2O with a new chemical dynamical model[J].Journal of Geophysical Research,1997,102:3 503-3 526.
[14] Siskind D E, Eckermann S D, McCormack J P, et al. Hemisphere differences in the temperature of summertime stratopshere and mesosphere[J].Journal of Geophysical Research,2003,108(D2): 4051, doi: 10.1029/2002jd002095.
[15] Sassi F , Kinnison D, Boville B, et al. The effect of ENSO on the dynamical, thermal and chemical structure of the middle atmosphere[J].Journal of Geophysical Research,2004,109, D17,108,doi: 10.1029/2003jd004434.
[16] Tian W, Chipperfield M P. A new coupled chemistry-climate model for the stratosphere: The importance of coupling for future O3-climate predictions[J].Quarterly Journal of the Royal Meteorological Society,2005,131:281-303.
[17] Brasseur G, de Baets P. Ions in the mesosphere and lower thermosphere: A two-dimensional model[J].Journal of Geophysical Research,1986,91:4 025-4 046.
[18] Richmond A D,Ridley E C, Roble R C. A thermospheric/ionospheric general circulation model with coupled electrodynamics[J]. Geophysical Research Letters,1992,19:601-604.
[19] Sonnemann G, Kremp Ch, Ebel A, et al. A three-dimensional dynamic model of minor constituents of the mesosphere[J]. Atmospheric Environment,1998, 32:3 157-3 172.
[20] Roble R C,Ridley E C.A thermosphere-ionosphere-mesosphere-electrodynamics general circulation model (TIME-GCM): Equinox solar minimum simulation, 30~500 km[J].Geophysical Research Letters,1994,21: 417-420.
[21] Austin J, Shindell D, Beagley S R,et al. Uncertainties and assessments of chemistry-climate models of stratosphere[J].Atmospheric Chemistry and Physics,2003, 3:1-27.
[22] Eyring V,Butchart N, Waugh D W,et al. Assessment of temperature, trace species, and ozone in chemistry-climate model simulations of the recent past[J].Journal of Geophysical Research,2006, 111, D22308, doi:10.1029/2006JD007327.
[23] Lü Daren,Wang Yingxi.Advances in middle atmosphere physics research[J].Chinese Journal of Geophysics,1994,37:72-84.[吕达仁,王英玺.中国中层大气研究的近期进展[J].地球物理学报,1994,37:72-84.]
[24] Pawson S,Kodera K, Hamilton K, et al. GCM-realiity intercomparison project for SPARC (GRIPS) : Scientifc issues and initial results[J].Bulletin of the American Meteorological Society,2000,81: 781-796.
[25] Austin J, Tourpali K, Rozanov E,et al. Coupled chemistry climate model simulations of the solar cycle in ozone and temperature[J].Journal of Geophysical Research,2008,113, D11306, doi:10.1029/2007JD009391.
[26] Megner L, Siskind D E, Rapp M, et al. Global and temporal distribution of meteoric smoke: A two-dimensional simulation study[J].Journal of Geophysical Research,2008,113, D03202, doi:10.1029/2007JD009054.
[27] Nagashima T, Takahashi M, Hasebe F. The first simulation of an ozone QBO in a general circulation model[J].Geophysical Research Letters,1998,25: 3 131-3 134.
[28] Tian W, Chipperfield M P, Gray L J, et al. Quasi-biennial oscillation and tracer distributions in a coupled chemistry-climate model[J].Journal of Geophysical Research,2006,111, D20301, doi:10.1029/2005JD006871.
[29] Thompson D W J, Furtado J C, Shepherd T G, et al. On the tropospheric response to anomalous stratospheric wave drag and radiative heating[J].Journal of Atmospheric Sciences,2006,63: 2 616-2 629.
[30] Xie F, Tian W, Chipperfield M P. Radiative effect of ozone change on stratosphere-troposphere exchange[J].Journal of Geophysical Research,2008,113,D00B09, doi:10.1029/2008JD009829.
[31] EyringV, Waugh D W, Bodeker G E,et al. Multimodel projections of stratospheric ozone in the 21st  century[J].Journal Geophysics Research,2007,112, D16303, doi: 10.1029/2006JD008332.
[32] Zhang S D , Yi F. A numerical study of nolinear propagation of gravity-wave packet in compressible atmosphere[J].Journal of Geophysical Research,1999, 104(D6):14 261-14 270.
[33] Wang Xuelian, Chen Zeyu, Lü Daren, et al. The seasonal and variation of gravity waves in the tropical lower stratosphere[J].Advances in Natural Sciences,2006,16(12) :  1 583-1 590.[王雪莲,陈泽宇,吕达仁,等. 热带下平流层重力波的季节和年际变化特征[J].自然科学进展,2006,16(12) :  1 583-1 590.]
[34] Li Jun,Zhang Shaodong,Yi Fan.A numerical simulation on gravity waves propagation in mesospheric thermal duct[J].Chinese Journal of Geophysics,2007,50(4):1 030-1 039.[李俊,张绍东,易帆.重力波包在中层大气温度波导中传播的数值模拟[J].地球物理学报,2007,50(4):1 030-1 039.]

[1] 于文涛, 李静, 柳钦火, 曾也鲁, 尹高飞, 赵静, 徐保东. 中国地表覆盖异质性参数提取与分析[J]. 地球科学进展, 2016, 31(10): 1067-1077.
[2] 蔡福, 明惠青, 纪瑞鹏, 冯锐, 米娜, 赵先丽, 张玉书. 玉米冠层辐射传输参数优化对陆气通量模拟的影响[J]. 地球科学进展, 2014, 29(5): 598-607.
[3] 陈修治,陈水森, 李丹, 苏泳娴, 钟若飞. 被动微波遥感反演地表温度研究进展[J]. 地球科学进展, 2010, 25(8): 827-835.
[4] 戎志国,刘诚,孙涵,马轮基,卢乃锰,刘京晶,张玉香,钟仕全,张艳,张鹏,张甲珅,李亚君,张行清,马瑞升,王君华. 卫星火情探测灵敏度试验与火情遥感新探测通道选择[J]. 地球科学进展, 2007, 22(8): 866-871.
[5] 石广玉. 大气辐射传输学[J]. 地球科学进展, 1991, 6(5): 71-73.
阅读次数
全文


摘要