Please wait a minute...
img img
高级检索
地球科学进展  2016, Vol. 31 Issue (10): 1067-1077    DOI: 10.11867/j.issn.1001-8166.2016.10.1067
研究论文     
中国地表覆盖异质性参数提取与分析
于文涛1, 3, 李静1, 2*, *, 柳钦火1, 2, 曾也鲁1, 3, 尹高飞1, 3, 赵静1, 2, 徐保东1, 3
1.中国科学院遥感与数字地球研究所 遥感科学国家重点实验室,北京 100101;
2.全球变化研究协同创新中心, 北京 100875;
3.中国科学院大学 资源与环境学院,北京 100049
Extraction and Analysis of Land Cover Heterogeneity over China
Yu Wentao1, 3, Li Jing1, 2, *, Liu Qinhuo1, 2, Zeng Yelu1, 3, Yin Gaofei1, 3, Zhao Jing1, 2, Xu Baodong1, 3
1.State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, China;
2.Joint Centre for Global Change Studies (JCGCS), Beijing 100875, China;
3.College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
 全文: PDF(8221 KB)   HTML
摘要: 地表异质性广泛存在于陆地表面各个尺度,是地表参数遥感反演不确定性的主要来源之一。基于高分辨率地表分类参考图,提取出低分辨率混合像元的端元数量和边界长度指标来描述地表异质性。然后以中国地区为例,使用全国30 m空间分辨率GlobalLand 30地表分类数据集提取出1 km尺度像元的描述混合结构和破碎程度的异质性指标。并基于提取出的异质性指标分析了中国区域在1 km尺度上非均质地表地物类型的组合特征、斑块特征和不同生态群系内部异质性特征。发现山地和生态交错区是主要的高异质性区域,稀树草原生物群系内部异质性最大(平均边界长度为7 426 m),其次依次为森林(4 323 m)、耕地/草地(3 160 m)和灌丛(1 779 m)。
关键词: 地表分类图空间异质性辐射传输地表参数反演    
Abstract: Spatial heterogeneity exists in land surface at every scale, and it is one of key factors to bring uncertainty to land parameter retrieval from remote-sensed data. This paper proposed a methodology to use the boundary length among different land cover types to characterize and quantify land surface heterogeneity based on high-resolution land cover images. Then the heterogeneity feature at 1 kilometer scale in China was extracted from “GlobalLand30” land cover datasets with the spatial resolution of 30 m. The mixed structure, degree of fragmentation and intra-heterogeneity of eight main vegetation biomes from MODIS land cover product over heterogeneous surface in china were analyzed. Mountain area and ecotone are more heterogeneous than other regions. Savanna biome (average boundary length is 7 426 meters) is the most heterogeneous zone followed by forest, grass/crop and shrub biome with average boundary length of 4 323, 3 160, 1 779 meters, respectively.
Key words: Parameter inversion    Radiative transfer.    Land cover dataset    Spatial heterogeneity
收稿日期: 2016-07-04 出版日期: 2016-10-20
:  P237  
基金资助: 国家自然科学基金项目“非均质混合像元遥感反射波谱模型构建及叶面积指数反演方法研究”(编号:41271366); 国家重点基础研究发展计划项目“复杂地表遥感信息动态分析与建模”(编号:2013CB733401)资助
通讯作者: 李静(1978-),女,黑龙江齐齐哈尔人,副研究员,主要从事植被辐射传输模型,叶面积指数反演等研究.E-mail:lijing01@radi.ac.cn   
作者简介: 于文涛(1995-),男,安徽五河人,硕士研究生,主要从事复杂地表的叶面积指数反演方法研究.E-mail:1096392329@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李静
于文涛
柳钦火
尹高飞
赵静
徐保东
曾也鲁

引用本文:

于文涛, 李静, 柳钦火, 曾也鲁, 尹高飞, 赵静, 徐保东. 中国地表覆盖异质性参数提取与分析[J]. 地球科学进展, 2016, 31(10): 1067-1077.

Yu Wentao, Li Jing, Liu Qinhuo, Zeng Yelu, Yin Gaofei, Zhao Jing, Xu Baodong. Extraction and Analysis of Land Cover Heterogeneity over China. Advances in Earth Science, 2016, 31(10): 1067-1077.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2016.10.1067        http://www.adearth.ac.cn/CN/Y2016/V31/I10/1067

[1] Hintz M, Lennartz Sassinek S, Liu S, et al. Quantification of land-surface heterogeneity via entropy spectrum method[J]. Journal of Geophysical Research , 2014, 119(14): 8 764-8 777.
[2] Haralick R M, Shanmugam K S. Combined spectral and spatial processing of ERTS imagery data[J]. Remote Sensing of Environment , 1974, 3(1): 3-13.
[3] De Cola L. Fractal analysis of a classified Landsat scene[J]. Photogrammetric Engineering and Remote Sensing , 1989, 55(5): 601-610.
[4] Garrigues S, Allard D, Baret F, et al. Quantifying spatial heterogeneity at the landscape scale using variogram models[J]. Remote Sensing of Environment , 2006, 103(1): 81-96.
[5] Chen J M. Spatial scaling of a remotely sensed surface parameter by contexture[J]. Remote Sensing of Environment , 1999, 69(1): 30-42.
[6] Wu J, Jelinski D E, Luck M, et al. Multiscale analysis of landscape heterogeneity: Scale variance and pattern metrics[J]. Geographic Information Sciences , 2000, 6(1): 6-19.
[7] Gilabert M A, Garcia-Haro F J, Meli�� J. A mixture modeling approach to estimate vegetation parameters for heterogeneous canopies in remote sensing[J]. Remote Sensing of Environment , 2000, 72(3): 328-345.
[8] Liang S. Numerical experiments on the spatial scaling of land surface albedo and leaf area index[J]. Remote Sensing Reviews , 2000, 19(1/4): 225-242.
[9] Qin W, Gerstl S A. 3-D scene modeling of semidesert vegetation cover and its radiation regime[J]. Remote Sensing of Environment , 2000, 74(1): 145-162.
[10] Widlowski J-L, Pinty B, Lavergne T, et al. Horizontal radiation transport in 3-D forest canopies at multiple spatial resolutions: Simulated impact on canopy absorption[J]. Remote Sensing of Environment , 2006, 103(4): 379-397.
[11] Marshak A, Davis A. 3D Radiative Transfer in Cloudy Atmospheres[M]. Heidelberg:Springer Berlin Heidelberg, 2005.
[12] Kobayashi H, Suzuki R, Nagai S, et al. Spatial scale and landscape heterogeneity effects on FAPAR in an open-canopy black spruce forest in Interior Alaska[J]. IEEE Geosci Remote Sensing Letters , 2014, 11(2): 564-568.
[13] Titov G A. Radiative horizontal transport and absorption in stratocumulus clouds[J]. Journal of the Atmospheric Sciences , 1998, 55(15): 2 549-2 560.
[14] Tian Y, Woodcock C E, Wang Y, et al. Multiscale analysis and validation of the MODIS LAI product: I. Uncertainty assessment[J]. Remote Sensing of Environment , 2002, 83(3): 414-430.
[15] Zeng Y, Li J, Liu Q, et al. A radiative transfer model for heterogeneous agro-forestry scenarios[J]. IEEE Transactions on Geoscience and Remote Sensing , 2016, 54(8): 4 613-4 628.
[16] Yao Yanjuan, Liu Qiang, Liu Qinhuo, et al. LAI inversion uncertainties in heterogeneous surface[J]. Journal of Remote Sensing ,2007,11(6):763-770.
. 遥感学报,2007,11(6):763-770.]
[17] Tian Y, Wang Y, Zhang Y, et al. Radiative transfer based scaling of LAI retrievals from reflectance data of different resolutions[J]. Remote Sensing of Environment , 2003, 84(1): 143-159.
[18] Fang H, Li W, Myneni R. The impact of potential land cover misclassification on MODIS Leaf Area Index (LAI) estimation: A statistical perspective[J]. Remote Sensing , 2013, 5(2): 830-844.
[19] Chen Jun, Chen Jin, Liao Anping, et al . Concepts and key techniques for 30 m global land cover mapping[J]. Acta Geodaetica et Cartographica Sinica , 2014,43(6):551-557.
. 测绘学报, 2014,43(6): 551-557].
[20] Chen J, Chen J, Liao A, et al. Global land cover mapping at 30 m resolution: A POK-based operational approach[J]. ISPRS Journal of Photogrammetry and Remote Sensing , 2015, 103:7-27.
[21] Friedl M A, Sulla-Menashe D, Tan B, et al. MODIS collection 5 global land cover: Algorithm refinements and characterization of new datasets[J]. Remote Sensing of Environment , 2010, 114(1):168-182.
[1] 蔡福, 明惠青, 纪瑞鹏, 冯锐, 米娜, 赵先丽, 张玉书. 玉米冠层辐射传输参数优化对陆气通量模拟的影响[J]. 地球科学进展, 2014, 29(5): 598-607.
[2] 陈修治,陈水森, 李丹, 苏泳娴, 钟若飞. 被动微波遥感反演地表温度研究进展[J]. 地球科学进展, 2010, 25(8): 827-835.
[3] 田文寿,张 敏,舒建川. 中层大气模式的应用及发展前景[J]. 地球科学进展, 2009, 24(3): 252-261.
[4] 戎志国,刘诚,孙涵,马轮基,卢乃锰,刘京晶,张玉香,钟仕全,张艳,张鹏,张甲珅,李亚君,张行清,马瑞升,王君华. 卫星火情探测灵敏度试验与火情遥感新探测通道选择[J]. 地球科学进展, 2007, 22(8): 866-871.
[5] 赵文智,何志斌;李志刚. 草原农垦区土地沙质荒漠化过程的生物学机制[J]. 地球科学进展, 2003, 18(2): 257-262.
[6] 周霞,张林艳,叶万辉. 生态空间理论及其在生物入侵研究中的应用[J]. 地球科学进展, 2002, 17(4): 588-594.
[7] 石广玉. 大气辐射传输学[J]. 地球科学进展, 1991, 6(5): 71-73.