地球科学进展 ›› 2002, Vol. 17 ›› Issue (4): 588 -594. doi: 10.11867/j.issn.1001-8166.2002.04.0588

生态学研究 上一篇    下一篇

生态空间理论及其在生物入侵研究中的应用
周霞,张林艳,叶万辉   
  1. 中国科学院华南植物研究所,广东 广州 510650
  • 收稿日期:2001-06-04 修回日期:2001-09-10 出版日期:2002-12-20
  • 通讯作者: 周霞(1977-),女,四川人,硕士研究生,主要从事森林生态学方面的研究.E-mail:zhouxia@scib.ac.cn E-mail:zhouxia@scib.ac.cn
  • 基金资助:

    中国科学院生物科学与技术研究特别支持课题“鼎湖山南亚热带季风常绿阔叶林物种多样性的维持机制研究”(编号:STZ97-1-05);国家重点基础研究发展规划项目“长江流域生物多样性变化、可持续利用与区域生态安全”专题“喜旱莲子草、水盾草、薇甘菊入侵的生态学效应研究”(编号:G2000046803)联合资助.

THEORY OF SPATIAL ECOLOGY AND THE APPLICATION TO THE STUDY ON BIOLOGICAL INVASION

ZHOU Xia, ZHANG Lin-Yan, YE Wan-Hui   

  1. South China Institute of Botany, Chinese Academy of Sciences, Guangzhou 510650, China
  • Received:2001-06-04 Revised:2001-09-10 Online:2002-12-20 Published:2002-08-01

生态空间理论(theoryofspat ialecology)是对生态系统空间关系进行研究的一种理论,主要包括尺度、空间格局和镶嵌动态等。模型是研究空间关系的重要手段,其中莱文斯(Levins)模型、细胞自动机(cel lularautomata)模型和反应-扩散(React ionDi f fusion)模型是 3个基本的模型。尺度是生态学研究中的核心问题,对于不同的研究对象,应在相应的尺度上进行思考。空间异质性是不同尺度上的生态学过程的结果,同时它也影响各种生态学过程。随着人们对生物入侵的日益关注,空间生态学理论尤其是一些空间模型越来越多的应用于入侵和竞争的研究中。

As a new branch of contemporary ecology,spatial ecology has been getting involved in continuing development. Which emphasizes the importance of space in ecology progress, mainly including scale, spatial heterogeneity, spatial pattern and so on. Spatial models are applied widely in spatial ecology. Of which, Levins, Cellular Automata and Reaction-Diffusion model are simple but important models. They can abstract different aspects of the essence of spatial ecology. The Levins model is only implicitly spatial because it assumes global dispersal, Cellular automata are created when Levins-like models are made more realistic by including local dispersal. While the last considers interactions in a spatially continuous habitat. Many others models derived from them. Scale is one of the central problems in spatial ecology. Which includes spatial, temporal and organizational scales. There is no single natural scale at which ecological phenomena should be studied, and ecosystems generally show characteristic variability on different scales. Spatial heterogeneity is the result of ecological process on different scales, on the other hand, it also affect all kinds of process. Biological invasion has been identified as one of the direct causes of biodiversity loss in the global context. Scientists have gradually paid more attention to it. Theories of spatial ecology, especially some models have been used in the problem. Finally, the current problems and application trends of spatial ecology are also discussed.

中图分类号: 

[1]  Tilman D,Lehman C L,Kareiva P. Population dynamics in spatial habitats[A]. In:Tilman D,Kaareiva P. Spatial Ecology:the Role of Space in Population Dynamics and Interspecific Interactions[C]. Princeton: Princeton University Press,1997. 1-5.
[2]  Hanski I. Metopopulation dynamics[J]. Nature,1998, 396:41-49.
[3]  Pickett S,Cadenasso M L. Landscape ecology:spatial heterogeneity in ecological systems[J]. Science,1995, 269:331-333.
[4]  Zhang Dayong,Lei Guangchun,Ilkka Hanski. Metapopulation dynamic:theory and applications[J]. Chinese Biodiversity ,1999,7(2):81-90.[张大勇,雷光春,Ilkka Hanski.集合种群动态理论与应用[J]. 生物多样性,1999,7(2):81-90.]
[5]  Wu Jjanguo. What is Metapopulation,really?[J]. Metapopulation. Acta Phytoecologica Sinica,2000,24(1):123-126.[邬建国.(复合种群)究竟是什么?[J].植物生态学报, 2000,24(1):123-126.]
[6]  Xiao Duning,Bu Rencang,Li Xiuzhen. Spatial Ecology and Landscape Heterogeneity[J]. Acta Ecological Sinica,1997,7(5):453-461.[肖笃宁,布仁仓,李秀珍.生态空间理论和景观异质性[J]. 生态学报,1997,7(5):453-461.]
[7]  Gause G F. The Struggle for Existence[M]. Baltimore:Williams and Wilkins,1935.
[8]  Huffaker C B. Experimental studies on predation:dispersion factors and predator-prey oscillations[J]. Hilgardia,1958,27:343-383.
[9]  MacArthur R H, Wilson E O. The Theory of Island Biogeography[M]. Princeton:Princeton University Press,1967.
[10]  Skellam J G. Random dispersal in theoretical populations[J]. Biometrika,1951,38:196-218.
[11]  Elton C S. The Ecology of Invasions by Animals and Plants[M]. London:Methuen,1958.
[12]  Mooney H A,Drake J A. Ecology of Biological Invasions of North America and Hawaii[M]. Berlin:Springer-Verlag,1986.
[13]  Drake J A, Mooney H A ,F di Castri,et al. Biological Invasions:A Global Perspective[M]. Chichester:John Wiley,1989.
[14]  Levin S A. Dispersion and population interactions[J]. American Naturalist,1974,108:207-228.
[15]  Horn H S,MacArthur R H. Competition among fugitive species in a harlequin environment[J]. Ecology,1972,53:749-752.
[16]  Platt W,Weis I. Resource partitioning and competition within a guild of fugitive prairie plants[J]. American Naturalist,1977,111:479-513.
[17]  Tilman D,May R M ,Lehman C L,et al. Habitat destruction and the extinction debt[J]. Nature,1994,371:65-66.
[18]  Fisher R A. The wave of advance of advantageous genes[J]. Annals of Eugenics,1937,7:355-269.
[19]  Levins R. Some demographic and genetic consequences of environmental heterogeneity for biological control[J]. Bulletin of the Entomological Society of America,1969,15:237-240.
[20]  Molofsky J. Population dynamics and pattern formation in theoretical populations[J]. Ecology,1994,75:30-39.
[21]  Crawley M J,May R M. Population dynamics and plant community structure:competition between annuals and perennials[J]. Journal of Theoretical Biology,1987,125:475-489.
[22]  Molofsky J. Population dynamics and pattern formation in populations:theoretical models and empirical tests using Cardamine pensylvanica[R]. Dissertation. Department of Botany,Duke University,DURHAM, North Carolina,USA,1993.
[23]  Green D G. Simulated effects of fire, dispersal and spatial pattern on competition with forest mosaics[J]. Vegetatio,1989,82:139-153.
[24]  Inghe O. Genet and ramet survivorship under different mortality regimes-a cellular automata model[J]. Journal of Theoretical Biology,1989,138:257-270.
[25]  Hassell M P,Comins H N,May R M. Spatial structure and chaos in insect populations[J]. Nature,1991,353:255-258.
[26]  Holmes E E. Partial differential equations in ecology:spatial interactions and population dynamics[J]. Ecology,1994,75(1):17-29.
[27]  Goldwasser,Cook L J,Silverman E D. The effects of variability on metapopulation dynamics and rates of invasion[J]. Ecology,1994,75(1):40-47.
[28]  Gao Zengxiang,Xie Baoyu,Li Dianmo. Advances of spatial theory and approaches in ecology[J]. Acta Ecologica Sinica,2000,20(supp):1-9.[高增祥,谢宝瑜,李典谟.生态学中的空间理论和研究方法进展[J]. 生态学报,2000,20(增刊):1-9.]
[29]  Wu Jianguo. Landscape ecology—concepts and theories[J]. Acta Ecological Sinica,2000,19(1):42-52.[邬建国.景观生态学——概念与理论[J]. 生态学报,2000,19(1):42-52.]
[30]  Pickett S,Cadenasso M L. Landscape ecology:spatial heterogeneity in ecological systems[J]. Science,1995,269:331-333.
[31]  Zhang D Y. Detection of spatial pattern in desert shrub population:a comment[J]. Ecological Model,1990,51:265-271.
[32]  Chen Yufu,Yu Feihai,Dong Ming.Spatial heterogeneity of the psammophytic half-shrub community in Mu Us Sandland[J]. Acta Ecological Sinica,2000,20(4):568-572.[陈玉福,于飞海,董鸣.毛乌素沙地沙生半灌木群落的空间异质性[J]. 生态学报,2000,20(4):568-572.]
[33]  Jeltsch F,Milton S J,Dean W R J,et al. Modelling the impact of small-scale heterogeneities on tree-grass coexistence in semi-arid savannas[J]. Journal of Ecology,1998,86:780-793.
[34]  Reynolds H L,Hungate B A,Chapin Ⅲ F S,et al. Soil heterogeneity and plant competition in an annual grassland[J]. Ecology,1997,78(7):2 076-2 090.
[35]  Hamrick J L,Lee J M. Effect of soil surface topography and litter cover on the germination,survival and growth of Musk Thistle (Carduus nutans) [J]. American Journal of Botany,1987,74:451-457.
[36]  Eldridge D J,Westoby M, Holbrook K G.Soil-surface characteristics,microtopography and proximity to mature shrubs:effects on survival of several cohorts of Atriplex vesicaria seedlings[J].Journal of Ecology,1991,78:357-364.
[37]  Schlesinger W H. On the relative dominance of shrubs in Okefenokee Swamp[J]. American Naturalist, 1978,112:949-954.
[38]  Ehrenfeld J G.Microtopography and vegetation in Atlantic white cedar swamps: the effects of natural disturbances[J].Canadian Journal of Botany,1995,73:474-484.
[39]  Petersen C J ,Campbell J E. Microsite differences and temporal change in plant communities of treefall pits and mounds in an old-growth forest[J]. Bulletin of the Torrey Botanical Club,1993,120:451-460.
[40]  Legendre P ,Fortin M J. Spatial pattern and ecological analysis[J]. Vegetatio,1989,80:107-138.
[41]  Legendre P. Spatial autocorrelation:trouble or new paradigm?[J]. Ecology,1993,74(6):1 659-1 673.
[42]  Sandlund O T,Schei P J,Viken . Invasive Species and Biodiversity Management[M]. Netherlands:Kluwer Academic Publishers,1999. 1-7.
[43]  Peng Shaolin,Xiang Yanci.The invasion of exotic plants and effects of ecosystems[J].Acta Ecological Sinica,1999,19(4):560-569.[彭少麟,向言词.植物外来种入侵及其对生态系统的影响[J].生态学报,1999,19(4):560-569.]
[44]  Andrew M S.Ecology:Unintended Consequences[J].Science,2000,287:769.
[45]  Williamson M.Mathematical models of invasion[A]. In: Drake J A,ed. Biological Invasions:A Gobal Perspective[C]. New York:John Wiley and Sons,1989. 329-350.
[46]  Alan H. Models of spatial spread:is the theory complete? [J] . Ecology,1996,77(6):1 675-1 679.
[47]  Higgins S I,Richardson D M,Cowling R M. Modeling invasive plant spread: the role of plant-environment interactions and model structure[J]. Ecology,1996,77(7):2 043-2 054.
[48]  Goldwasser L J,Silverman E D. The effects of variability on metapopulation dynamics and rates of invasion[J]. Ecology,1994,75(1):40-47.
[49]  Van den Bosch E,Hengeveld R,Metz J A J. Analysing the velocity of animal range expansion[J]. Journal of Biogeography,1992, 19:135-150.
[50]  Kermack W O,McKendrick A G. A contribution to the mathematical theory of epidemics[J]. Proceedings of the Royal Society of London,1926,115:700-721.
[51]  Lotka A J. Elements of Physical Biology[M]. Baltimore:Williams and Wilkins,1925.
[52]  Volterra V. Variazioni e fluttuazioni del numero d'individui in specie animale conviventi[J]. Memorie della Reale Accademia Nazionale dei Lincei,1926 ,2(Series 6) :31-113.
[53]  Hutchinson G E. The paradox of the plankton[J]. American Naturalist,1961,95:137-147.
[54]  Tilman D. Competition and biodiversity in spatially structured habitats[J]. Ecology,1994,75:2-16.
[55]  Djordjevic Z V. Phase transition in the topological properties of the generalized percolation model[J]. Physica A ,1992,187:425-435.
[56]  O'Neill R V,Gardner R H,Turner M G. A hierarchical neutral model for landscape analysis[J]. Landscape Ecology,1992,7:55-61.
[57]  Steinberg EK,Kareiva P. Challenges and opportunities for empirical evaluation of “spatial theory” [A]. In:Tilman D,Kaareiva P. Spatial Ecology:the Role of Space in Population Dynamics and Interspecific Interactions[C]. Princeton: Princeton University Press,1997. 318-332.

[1] 田静. 大气 CO2浓度增加对中国区域植被蒸腾的影响[J]. 地球科学进展, 2021, 36(8): 826-835.
[2] 贾诗超,张廷军,范成彦,刘琳,邵婉婉. InSAR技术多年冻土研究进展[J]. 地球科学进展, 2021, 36(7): 694-711.
[3] 韦进, 申重阳, 胡敏章, 江颖, 张晓彤, 刘子维. 连续重力观测站测定的中国大陆潮汐因子空间分布特征[J]. 地球科学进展, 2021, 36(5): 490-499.
[4] 吴殿廷, 张文新, 王彬. 国土空间规划的现实困境与突破路径[J]. 地球科学进展, 2021, 36(3): 223-232.
[5] 顾菊, 张勇, 刘时银, 王欣. 青藏高原冰川底部滑动估算方法研究: 进展、问题与展望[J]. 地球科学进展, 2021, 36(3): 307-316.
[6] 贺缠生, 田杰, 张宝庆, 张兰慧. 土壤水文属性及其对水文过程影响研究的进展、挑战与机遇[J]. 地球科学进展, 2021, 36(2): 113-124.
[7] 庞姗姗, 王喜冬, 刘海龙, 邵彩霞. 热带海洋盐度障碍层多尺度变异机理及其对海气相互作用的影响研究进展[J]. 地球科学进展, 2021, 36(2): 139-153.
[8] 王飞, 陶宇, 欧维新. 景观格局变化的水质净化服务响应关系研究进展[J]. 地球科学进展, 2021, 36(1): 17-28.
[9] 邓文文, 王荣, 刘正文, 郑文秀, 张晨雪. 模型揭示的浅水湖泊稳态转换影响因素分析[J]. 地球科学进展, 2021, 36(1): 83-94.
[10] 王大伟,孙悦,司少文,吴时国. 海底周期阶坎研究进展与挑战[J]. 地球科学进展, 2020, 35(9): 890-901.
[11] 张永垂, 王宁, 周林, 刘科峰, 汪浩笛. 海洋中尺度涡旋表面特征和三维结构研究进展[J]. 地球科学进展, 2020, 35(6): 568-580.
[12] 郭飞,吉喜斌,金博文,赵丽雯,焦丹丹,赵文玥,张靖琳. 西北干旱区灌溉绿洲农田生态系统冠层导度估算及其在蒸散计算中的应用[J]. 地球科学进展, 2020, 35(5): 523-533.
[13] 李亚龙, 刘先贵, 胡志明, 端祥刚, 张杰, 詹鸿铭. 页岩气水平井产能预测数值模型综述[J]. 地球科学进展, 2020, 35(4): 350-362.
[14] 郑明贵,李期. 中国 20202030年石油资源需求情景预测[J]. 地球科学进展, 2020, 35(3): 286-296.
[15] 张宏文,续昱,高艳红. 19822005年青藏高原降水再循环率的模拟研究[J]. 地球科学进展, 2020, 35(3): 297-307.
阅读次数
全文


摘要