Please wait a minute...
img img
高级检索
地球科学进展  2016, Vol. 31 Issue (10): 1078-1089    DOI: 10.11867/j.issn.1001-8166.2016.10.1078
生态学研究     
干旱区山地森林生态水文研究进展
何志斌1, 杜军1, 陈龙飞1, 朱喜1, 2, 赵敏敏1, 2
1.中国科学院西北生态环境资源研究院临泽内陆河流域研究站,中国科学院内陆河流域生态水文重点实验室,甘肃 兰州 730000;
2.中国科学院大学,北京 100049
Review on Montane Forest Eco-hydrology in Arid Area
He Zhibin1, Du Jun1, Chen Longfei1, Zhu Xi1, 2, Zhao Minmin1, 2
1.Linze Inland River Basin Research Station, Key Laboratory of Inland River Basin Science, Northwest Institute of Eco-Environment and Resource, Chinese Academy of Sciences, Lanzhou 730000, China;
2.University of Chinese Academy of Sciences, Beijing 100049, China
 全文: PDF(1532 KB)   HTML
摘要: 在全球气候变化背景下,干旱区山地森林及其与水的关系和水文功能表现出较强的敏感性,引起了学术界和管理部门的高度关注。从森林空间格局、生态水文过程及其对气候变化的响应等方面,系统阐述了干旱区山地森林生态水文的研究进展,辨析了森林斑块格局的形成与稳定机理、森林与流域产水量的关系以及森林生态水文对气候变化的响应。此外,结合目前的研究进展,提出了未来的研究重点:加强植被格局与水文过程的耦合研究;借助遥感技术和模型解决尺度问题;提升森林水文功能的认识水平;确定兼顾水文和其他生态效应的适宜森林规模。
关键词: 森林生态水文空间格局气候变化干旱区山地    
Abstract: Since the forest eco-hydrology of arid area shows a well sensitivity of the global climate change, the relationship between forest and water and the hydrological function has attracted the attention of academic communites and management departments. This paper expounds the research progress in arid mountain forest eco-hydrology, and analyses the formation and stable mechanism of forest patch pattern, the relationship between forest and water yield and the response of forest eco-hydrology to climate change from three aspects: Forest spatial pattern, hydrological process and its response to climate change. In addition, combined with the current research progress, the research emphases in the future are put forward: Strengthening the research on the coupling of vegetation pattern and hydrological process; solving the scale problem by using remote sensing technique and model; enhancing the understanding towards the hydrological function of forest; determining the suitable forest scale which can balance the relationship of ecology and hydrological effect.
Key words: Spatial patterns    Key Words: Mountains in arid regions    Climate change.    Forest eco-hydrology
收稿日期: 2016-07-19 出版日期: 2016-10-20
:  P349  
基金资助: 国家自然科学基金优秀青年科学基金项目“干旱区山地森林生态水文学”(编号:41522102); 国家自然科学基金青年科学基金项目“祁连山青海云杉物候表型的空间分异规律及其对生长适合度的影响”(编号:41601051)资助
作者简介: 何志斌(1977-),男,宁夏彭阳人,研究员,主要从事干旱区生态水文学研究.E-mail:hzbmail@lzb.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
杜军
何志斌
陈龙飞
赵敏敏
朱喜

引用本文:

何志斌, 杜军, 陈龙飞, 朱喜, 赵敏敏. 干旱区山地森林生态水文研究进展[J]. 地球科学进展, 2016, 31(10): 1078-1089.

He Zhibin, Du Jun, Chen Longfei, Zhu Xi, Zhao Minmin. Review on Montane Forest Eco-hydrology in Arid Area. Advances in Earth Science, 2016, 31(10): 1078-1089.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2016.10.1078        http://www.adearth.ac.cn/CN/Y2016/V31/I10/1078

[1] Zhang Baiping, Luo Geping. Ecologicalpatterns and sustainable development in the mountainous regions in arid areas[J]. Arid Zone Research ,2005,22(4): 419-423.
.干旱区研究, 2005, 22(4): 419-423.]
[2] Chen Xi, Jiang Fengqing, Wang Yajun, et al . Characteristics of the eco-geographical pattern in arid land of Central Asia[J]. Arid Zone Research , 2013, 30(3): 358-390.
. 干旱区研究, 2013, 30(3): 358-390.]
[3] Wang Genxu, Deng Wei, Yang Yan, et al . The advances priority and developing trend of alpine ecology[J]. Journal of Mountain Science , 2011, 29(2): 129-140.
. 山地学报, 2011, 29(2): 129-140.]
[4] Wu Guanghe. The mountain’s significance in resource, environment and ecology in the arid land of China[J]. Journal of Arid Land Resources and Environment , 1993,7(3/4): 426-431.
. 干旱区资源与环境, 1993,7(3/4): 426-431.]
[5] Cheng Guodong, Xiao Hongliang, Xu Zhongmin, et al . Water issue and its countermeasure in the inland river basins of Northwest China—A case study in Heihe River Basin[J]. Journal of Glaciology and Geocryology , 2006, 28(3): 406-413.
. 冰川冻土, 2006, 28(3): 406-413.]
[6] Wang Jinye, Yu Pengtao, Wang Yanhui. Research on the Forest Eco-hydrological Processes:The Water Conservation Forest in Qilian Mountain as A Case[M]. Beijing:Science Press, 2008.
. 北京: 科学出版社, 2008.]
[7] Jackson R B, Jobb��gy E G, Avissar R, et al . Trading water for carbon with biological carbon sequestration[J]. Science , 2005, 310(5 756): 1 944-1 947.
[8] Farley K A, Jobb��gy E G, Jackson R B. Effects of afforestation on water yield:A global synthesis with implications for policy[J]. Global Change Biology , 2005, 11(10): 1 565-1 576.
[9] Zhang Xinshi. The distribution of the forests in Eastern Tien Shan Mountain[C]∥The Natural Conditions of Xinjiang Uygur Autonomous Region (Essay Collection).Beijing: Science Press,1959.
∥新疆维吾尔自治区的自然条件(论文集). 北京: 科学出版社, 1959.]
[10] Zhang Baiping, Tan Ya, Mo Shenguo. Digital spectrum and analysis of altitudinal belts in the Tianshan Mountains[J]. Journal of Mountain Science ,2004, 22(2): 184-192.
. 山地学报, 2004, 22(2): 184-192.]
[11] Sun Ranhao, Zhang Baiping. Effect of regional topographic and climatic factors on limits of altitudinal forest belts[J]. Scientia Geographica Sinica , 2013, 33(2): 167-173.
. 地理学报, 2013, 33(2): 167-173.]
[12] Wang Guohong, Yang Limin. Gradient analysis and environmental interpretation of woody plant communities in the middle section of the northern slopes of Qilian Mountain, Gansu, China[J]. Acta Phytoecologica Sinica , 2001, 25(6): 733-740.
. 植物生态学报, 2001, 25(6): 733-740.]
[13] Yang Guojing, Xiao Duning. Spatial pattern analysis of forest landscape in low coteau of Middle Qilian Mountains[J]. Chinese Journal of Applied Ecology , 2004, 15(2): 269-272.
. 应用生态学报, 2004, 15(2): 269-272.]
[14] Zhao Chuanyan, Bie Qiang, Peng Huanhua. Ananlysis of the niche space of Picea crassifolis on the northern slope of Qilian Mountains[J]. Acta Geographica Sinica , 2010, 65(1): 113-121.
. 地理学报,2010,65(1):113-121.]
[15] Wang Bin, Yu Pengtao, Wang Shunli, et al. Response of soil water storage to slope position of forestland in Qilian Mountains[J]. Science of Soil and Water Conservation , 2016, 14(3): 101-108.
. 中国水土保持科学, 2016, 14(3): 101-108.]
[16] Wang Ranghui, Zhang Huizhi, Huang Qing. Characteristics andlaws of coupling system of arid mountainous, oasis and desert under the influence of global change[J]. Chinese Science Bulletin , 2006,(Suppl.1): 61-65.
. 科学通报, 2006,(增刊1): 61-65.]
[17] Liu H, Zhao W, He Z. Self-organized vegetation patterning effects on surface soil hydraulic conductivity: A case study in the Qilian Mountains, China[J]. Geoderma , 2013, 192(1): 362-367.
[18] Wu Guanghe, Tian Lianshu, Hu Shuangxi, et al . Physical Geography[M]. Beijing: Higher Education Press, 2000.
. 北京: 高等教育出版社, 2000.]
[19] Freitas S R, Hawbaker T J, Metzger J P. Effects of roads, topography, and land use on forest cover dynamics in the Brazilian Atlantic Forest[J]. Forest Ecology and Management ,2010, 259(3): 410-417.
[20] He Wenhui, Zhang Baiping, Pang Yu, et al . Effect of slope aspect on the distribution of mountain forest in the Northern Flank of the Central Tianshan Mountains[J]. Mountain Research , 2015,(5): 546-552.
. 山地学报, 2015,(5): 546-552.]
[21] He Z, Zhao W, Liu H, et al . The response of soil moisture to rainfall event size in subalpine grassland and meadows in a semi-arid mountain range: A case study in northwestern China’s Qilian Mountains[J]. Journal of Hydrology , 2012, 420/421: 183-190,doi:10.1016/j.jhydrol.2011.11.056.
[22] IPCC. Climate Change 2007: The Physical Science Basis[M]. Cambridge: Cambridge University Press, 2007.
[23] Heisler-White J L, Knapp A K, Kelly E F. Increasing precipitation event size increases aboveground net primary productivity in a semi-arid grassland[J]. Oecologia , 2008, 158(1): 129-140.
[24] Gartzia M, Alados C L, Pérez-Cabello F. Assessment of the effects of biophysical and anthropogenic factors on woody plant encroachment in dense and sparse mountain grasslands based on remote sensing data[J]. Progress in Physical Geography , 2014, 38(2): 201-217.
[25] He Zhibin, Zhao Wenzhi, Zhang Lijie, et al . Logging disturbance and the restoration process of piceacrassifolia forest in Qilian Mountain[J]. Scientia Silvae Sinicae , 2009, 45(2): 12-16.
. 林业科学, 2009, 45(2): 12-16.]
[26] Ellison D, Futter M N, Bishop K. On the forest cover-water yield debate: From demand-to supply-side thinking[J]. Global Change Biology , 2012, 18(3): 806-820.
[27] Cheng Guodong, Zhao Chuanyan, Wang Yao. Advances in researches of ecological and hydrological processes in the forest ecosystem in inland river basin of the arid regions, China[J]. Advances in Earth Science , 2011, 26(11): 1 125-1 130.
. 地球科学进展,2011,26(11):1 125-1 130.
[28] Hörmann G, Branding A, Clemen T, et al . Calculation and simulation of wind controlled canopy interception of a beech forest in Northern Germany[J]. Agricultural and Forest Meteorology , 1996, 79(3):131-148.
[29] Llorens P, Poch R, Latron J, et al . Rainfall interception by a Pinus sylvestris forest patch overgrown in a Mediterranean mountainous abandoned area I. Monitoring design and results down to the event scale[J]. Journal of Hydrology ,1997, 199(3): 331-345.
[30] Sun Xiangyang, Wang Genxu, Wu Yong, et al . Hydrologic regime of interception for typical forest ecosystem at subalpine of Western Sichuan,China[J]. Acta Ecologica Sinica ,2013, 33(2): 501-508.
. 生态学报, 2013, 33(2): 501-508.]
[31] Breuer L, Eckhardt K, Frede H G. Plant parameter values for models in temperate climates[J]. Ecological Modelling ,2003, 169(2): 237-293.
[32] Liu Shirong, Wen Yuanguang, Wang Bing, et al . The Law of the Hydrological Function of Chinese Forest Ecosystem[M]. Beijing:China Forestry Publishing House,1996.
. 北京: 中国林业出版社, 1996.]
[33] Wang Lixian, Zhang Zhiqiang. Advances in the study of ecohydrological effects from vegetation changes[J]. World Forest Research , 1998, 6: 15-24.
. 世界林业研究, 1998,6:15-24.]
[34] Zhang Xuelong, Luo Longfa, Jing Wenmao, et al. Study on the distribution effect of canopy interception of Picea crassifolia forest in Qilian Mountains[J]. Journal of Mount Science , 2007, 25(6):678-683.
. 山地学报, 2007, 25(6):678-683.]
[35] Zhang Lijie, Zhao Wenzhi, He Zhibin, Characteristics in Picea crassifolia forest fractal dimension and its influencing factors[J]. Acta Ecologica Sinica , 2008,28(4): 1 383-1 389.
. 生态学报, 2008,28(4): 1 383-1 389.]
[36] He Z B, Yang J J, Du J, et al. Spatial variability of canopy interception in a spruce forest of the semiarid mountain regions of China[J]. Agricultural and Forest Meteorology , 2014, 188: 58-63,doi:10.1016/j.agformet.2013.12.008.
[37] Granier A, Biron P, Lemoine D. Water balance, transpiration and canopy conductance in two beech stands[J]. Agricultural and Forest Meteorology , 2000, 100(4): 291-308.
[38] Köstner B. Evaporation and transpiration from forests in Central Europe-relevance of patch-level studies for spatial scaling[J]. Meteorology and Atmospheric Physics , 2001, 76(1/2): 69-82.
[39] Chang X, Zhao W, He Z. Radial pattern of sap flow and response to microclimate and soil moisture in Qinghai spruce ( Picea crassifolia ) in the upper Heihe River Basin of arid northwestern China[J]. Agricultural and Forest Meteorology , 2014, 187: 14-21,doi:10.1016/j.agrformet.2013.11.004.
[40] Bovard B D, Curtis P S, Vogel C S, et al . Environmental controls on sap flow in a northern hardwood forest[J]. Tree Physiology , 2005, 25(1): 31-38.
[41] Baldocchi R A, Tan L, King D S, et al . Mass spectrometric analysis of the fragments produced by cleavage and reduction of rat prolactin: Evidence that the cleaving enzyme is cathepsin D[J]. Endocrinology , 1993, 133(2):935-938.
[42] Ren Chuanyou, Yu Guirui, Wang Qiufeng, et al . Canopy photosynthetic ecosystem scale-transpiration coupling model[J]. Science in China ( Series D ), 2004,34(Suppl.2): 141-151.
. 中国科学:D辑, 2004,34(增刊2): 141-151.]
[43] Davi H, Dufrêne E, Granier A, et al .Modelling carbon and water cycles in a beech forest: Part II.: Validation of the main processes from organ to stand scale[J]. Ecological Modelling , 2005, 185(2): 387-405.
[44] Chang X, Zhao W, Liu H, et al . Qinghai spruce ( Picea crassifolia ) forest transpiration and canopy conductance in the upper Heihe River Basin of arid northwestern China[J]. Agricultural and Forest Meteorolog y, 2014, 198: 209-220,doi:10.1016/j.agrformet.2014.08.015.
[45] Tian Fengxia, Zhao Chuanyan, Feng Zhaodong.Model-based estimation of the canopy transpiration of Qinghai spruce ( Picea crassifolia ) forest in the Qilian Mountains[J]. Acta Ecologica Sinica , 2011, 31(9):2 383-2 391.
. 生态学报, 2011, 31(9):2 383-2 391.]
[46] Qiu Yang, Fu Bojie, Wang Jun, et al . Spatio temporal variation of soil moisture and its relation to environmental factors[J]. Chinese Journal of Ecology , 2007, 26(1): 100-107.
. 生态学杂志, 2007, 26(1): 100-107.]
[47] He Z, Zhao W, Liu H, et al . Effect of forest on annual water yield in the mountains of an arid inland river basin: A case study in the Pailugou catchment on northwestern China’s Qilian Mountains[J]. Hydrological Processes ,2012, 26(4): 613-621.
[48] Wang Shunli, Wang Jinye, Zhang Xuelong, et al . Distribution of withered litters of moss and hydrographic characteristics in the Picea crassifolia forestry on Qilian Mountain[J]. Research of Soil and Water Conservation ,2006,(5): 156-159.
. 水土保持研究, 2006,(5): 156-159.]
[49] Liu Xiande, Li Xiaoxiong, Zhang Xuelong, et al . Hydrological characteristics of different forest types of soil in arid and semi arid region[J]. Arid Land Geography ,2009, 32(5): 691-697.
. 干旱区地理, 2009, 32(5): 691-697.]
[50] Zhu Xi, He Zhibin, Du Jun, et al . Effects of thinning on the soil moisture of the Picea crassifolia plantation in Qilian Mountains[J]. Forest Research ,2015,(1): 55-60.
. 林业科学研究, 2015,(1):55-60.]
[51] Huang Bingwei. Some trends of geographic research[J]. Scientia Geographic Sinca , 1981, 1(1): 2-10.
. 地理科学, 1981, 1(1): 2-10.]
[52] Ma Xuehua, Yang Maorui, Liu Yongmin. A study on characteristics of runoff in forest plantation of Cunninghamia lanceolate and Pinus massoniana[J]. Forest Research , 1992,(3): 284-289.
. 林业科学研究, 1992,(3): 284-289.]
[53] Sha Yukun, Cheng Genwei, Li Weipeng.The impacts and evaluations of catchment scales on forest hydrology[J]. Journal of Mountain Science , 2013,31(5): 513-518.
. 山地学报, 2013,31(5): 513-518.]
[54] Cheng Guodong, Xiao Honglang, Fu Bojie, et al. Advances in synthetic research on the eco-hydrological process of the Heihe River Basin[J]. Advances in Earth Science ,2014, 29(4):431-437.
. 地球科学进展, 2014, 29(4):431-437.]
[55] Qin D, Plattner G K, Tignor M, et al. Climate Change 2013: The Physical Science Basis[M]. Cambridge, UK, and New York: Cambridge University Press, 2014.
[56] Ma Yalan, Liu Puxing. Characteristic analyses of time space change trends of the highest and the lowest temperature of the past 46 years in the Shiyang River Basin[J]. Quaternary Sciences , 2009,29(5):957-965.
. 第四纪研究, 2009,29(5):957-965.]
[57] Li Qihu. Arid Climate Change and Its Impact on Hydrological Processes[D]. Wuhan: Central China Normal University, 2012.
. 武汉: 华中师范大学, 2012.]
[58] Yao Junqiang, Yang Qing, Chen Yaning. Climate change in arid areas of Northwest China in past 50 years and its effects on the local ecological environment[J]. Chinese Journal of Ecology , 2013, 32(5): 1 283-1 291.
. 生态学杂志, 2013, 32(5): 1 283-1 291.]
[59] Zhang Yaozong. Climatic Variation over Qilian Mountain Region in Last 50 Years[D]. Lanzhou: Northwest Normal University, 2009.
. 兰州: 西北师范大学, 2009.]
[60] He Z, Zhao W, Zhang L, et al . Response of tree recruitment to climatic variability in the alpine treeline ecotone of the Qilian Mountains, northwestern China[J]. Forest Science , 2013, 59(1): 118-126.
[61] Wang S, Zhang M, Li Z, et al . Glacier area variation and climate change in the Chinese Tianshan Mountains since 1960[J]. Journal of Geographical Sciences , 2011, 21(2): 263-273.
[62] Wang Xiuna, Yang Taibao, Tian Hongzhen, et al . Response of glacier variation in the southern Altai Mountains to climate change during the last 40 years[J]. Journal of Arid Land Resources and Environment , 2013, 27(2): 77-82.
. 干旱区资源与环境, 2013, 27(2): 77-82.]
[63] Luo Geping, Dai Li, Li Yanzhong, et al . Prospects on alpine timberline change and its driving mechanism in arid area of Central Asia[J]. Arid Land Geography , 2011, 34(6): 873-879.
. 干旱区地理, 2011, 34(6): 873-879.]
[64] Li Mingcai, Luo Tianxiang, Zhu Jiaojun, et al . Advances information mechanism of alpine timberline and associated physio-ecological characteristics of plants[J]. Acta Ecologica Sinica , 2008, 28(11): 5 583-5 591.
. 生态学报, 2008, 28(11):5 583-5 591.]
[65] Körner C. The use of ‘altitude’ in ecological research[J]. Trends in Ecology & Evolution , 2007, 22(11): 569-574.
[66] Holtmeier F K, Broll G. Treeline advance-driving processes and adverse factors[J]. Landscape Online ,2007,1:1-33,doi:10.3097/LO.200701.
[67] Gehrig-Fasel J, Guisan A, Zimmermann N E.Evaluating thermal treeline indicators based on air and soil temperature using an air-to-soil temperature transfer model[J]. Ecological Modelling , 2008, 213(3): 345-355.
[68] MacDonald G M, Kremenetski K V, Beilman D W. Climate change and the northern Russian treeline zone[J]. Philosophical Transactions of the Royal Society of London B : Biological Sciences , 2008, 363(1 501): 2 283-2 299.
[69] Harsch M A, Hulme P E, McGlone M S, et al . Are treelines advancing? A global meta—Analysis of treeline response to climate warming[J]. Ecology Letters ,2009, 12(10): 1 040-1 049.
[70] Zhang Yun, Kong Zhaochen, Yan Shun, et al. The change of Ancient Spruce Timberline and the environmental features in late holocene in Tianshan Mountains[J]. Chinese Science Bulletin , 2006, 52(12): 1 450-1 458.
. 科学通报, 2006, 52(12): 1 450-1 458.]
[71] Sang Weiguo, Wang Yunxia, Su Hongxin, et al. Tree-ring width of Tianshan Spruce in response to the moisture gradient factor[J]. Chinese Science Bulletin , 2007, 52(19): 2 292-2 298.
. 科学通报, 2007, 52(19): 2 292-2 298.]
[72] Wang Lianxi, Chen Huailiang, Li Qi, et al. Research advances in plant phenology and climate[J]. Acta Ecologica Sinica , 2010, 30(2): 447-454.
. 生态学报, 2010, 30(2): 447-454.]
[73] Mo Fei, Zhao Hong, Wang Jianyong, et al . The key issues on plant phenology under global change[J]. Acta Ecologica Sinica , 2011, 31(9): 2 593-2 601.
. 生态学报, 2011, 31(9): 2 593-2 601.]
[74] Linkosalo T, Lappalainen H K, Hari P. A comparison of phenological models of leaf bud burst and flowering of boreal trees using independent observations[J]. Tree Physiology , 2008, 28(12): 1 873-1 882.
[75] Busetto L, Colombo R, Migliavacca M, et al . Remote sensing of larch phenological cycle and analysis of relationships with climate in the Alpine region[J]. Global Change Biology ,2010, 16(9): 2 504-2 517.
[76] Jeong S J, Chang H H, Hyeon J G, et al . Phenology shifts at start vs. end of growing season in temperate vegetation over the Northern Hemisphere for the period 1982-2008[J]. Global Change Biology , 2011, 17(7): 2 385-2 399.
[77] Richardson A D, Keenan T F, Migliavacca M, et al . Climate change, phenology, and phenological control of vegetation feedbacks to the climate system[J]. Agricultural and Forest Meteorology , 2013, 169: 156-173,doi:10.1016/j.agrformet.2012.09.012.
[78] Du J, He Z, Yang J, et al . Detecting the effects of climate change on canopy phenology in coniferous forests in semi-arid mountain regions of China[J]. International Journal of Remote Sensing , 2014, 35(17): 6 490-6 507.
[79] Estrella N, Menzel A. Responses of leaf colouring in four deciduous tree species to climate and weather in Germany[J]. Climate Research , 2006, 32(3): 253.
[80] Takahashi M. Latitudinal patterns in the phenological responses of leaf colouring and leaf fall to climate change in Japan[J]. Global Ecology and Biogeography , 2008, 17(4): 556-561.
[81] Delpierre N, Dufrêne E, Soudani K, et al . Modelling interannual and spatial variability of leaf senescence for three deciduous tree species in France[J]. Agricultural and Forest Meteorology , 2009, 149(6): 938-948.
[82] Peñuelas J, Filella I. Phenology feedbacks on climate change[J]. Science , 2009, 324(5 929): 887.
[83] Wu Xiangding. Tree Ring and the Change of Climate[M]. Beijing: China Meteorological Press, 1990.
. 北京: 气象出版社, 1990.]
[84] Zhang Wentao, Jiang Yuan, Wang Mingchang, et al. Responses of radial growth in larix principis-rupprechtii to climate change along an elevation gradient on the southern slope of Luya Mountain[J]. Acta Ecologica Sinica , 2015, 35(19): 6 481-6 488.
. 生态学报, 2015, 35(19): 6 481-6 488.]
[85] He Z B, Zhao W Z, Zhang L J, et al . Response of tree-ring growth to climate at treeline ecotones in the Qilian Mountains, northwestern China[J]. Science in Cold and Aird Regions , 2011,3(2):103-109.
[86] Borgaonkar H P, Sikder A B, Ram S. High altitude forest sensitivity to the recent warming: A tree-ring analysis of conifers from Western Himalaya, India[J]. Quaternary International , 2011, 236(1): 158-166.
[87] Black T A, Chen W J, Barr A G, et al. Increased carbon sequestration by a boreal deciduous forest in years with a warm spring[J]. Geophysical Research Letters , 2000, 27(9): 1 271-1 274.
[88] Wu Xiuchen, Pei Tingting, Li Xiaoyan, et al . Tree growth responding to climate changes[J]. Journal of Beijing Normal University ( Natural Science ), 2016, 52(1): 109-116.
. 北京师范大学学报: 自然科学版, 2016, 52(1): 109-116.]
[89] Qi Z, Liu H, Wu X, et al . Climate-driven speedup of alpine treeline forest growth in the Tianshan Mountains, Northwestern China[J]. Global Change Biology ,2015,21(2):816-826.
[90] Yu L, Huang L, Shao X, et al . Warming-induced decline of Picea crassifolia growth in the Qilian Mountains in recent decades[J]. PLoS One ,2015,10(6): e0129959.
[91] Wen Yuanguang, Liu Shirong. Quantitative analysis of the characteristics of rain fall interception of main forest ecosystems in China[J]. Scientia Silvae Sinicae ,1995,31(4): 289-298.
. 林业科学,1995,31(4):289-298.]
[92] Liu Shirong, Wen Yuanguang, Cai Daoxiong, et al . Impacts of climate change on forests and adaptive multi-scales management: A review[J]. Guangxi Sciences ,2014, 21(5): 419-435.
.广西科学,2014,21(5): 419-435.]
[93] Liu Xiaodong, Zhou Guoyi, Chen Xiuzhi, et al . Forest microclimate change along with the succession and response to climate change in south subtropical region[J]. Acta Ecologica Sinica ,2014, 34(10): 2 755-2 764.
.生态学报,2014, 34(10):2 755-2 764.]
[94] Wayne P M, Reekie E G, Bazzaz F A. Elevated CO 2 ameliorates birch response to high temperature and frost stress: Implications for modeling climate-induced geographic range shifts[J]. Oecologia ,1998,114(3):335-342.
[95] Lagergren F, Lindroth A. Transpiration response to soil moisture in pine and spruce trees in Sweden[J]. Agricultural and Forest Meteorology ,2002, 112(2): 67-85.
[96] Wullschleger S D, Meinzer F C, Vertessy R A. A review of whole-plant water use studies in tree[J]. Tree Physiology ,1998, 18(8/9): 499-512.
[97] Hutley L B, O’grady A P, Eamus D. Monsoonal influences on evapotranspiration of savanna vegetation of northern Australia[J]. Oecologia ,2001,126(3):434-443.
[98] Shaman J, Stieglitz M, Burns D. Are big basins just the sum of small catchments?[J]. Hydrological Processes ,2004,18(16):3 195-3 206.
[1] 周洪建. 当前全球减轻灾害风险平台的前沿话题与展望——基于2017年全球减灾平台大会的综述与思考[J]. 地球科学进展, 2017, 32(7): 688-695.
[2] 李兴文, 张鹏, 强小科, 敖红. 三门峡会兴沟剖面黄土—古土壤序列的岩石磁学研究[J]. 地球科学进展, 2017, 32(5): 513-523.
[3] 何霄嘉, 王敏, 冯相昭. 生态系统服务纳入应对气候变化的可行性与途径探讨[J]. 地球科学进展, 2017, 32(5): 560-567.
[4] 吴佳, 高学杰, 韩振宇, 徐影. 基于有效温度指数的云南舒适度变化分析[J]. 地球科学进展, 2017, 32(2): 174-186.
[5] 程根伟, 范继辉, 彭立. 高原山地土壤冻融对径流形成的影响研究进展[J]. 地球科学进展, 2017, 32(10): 1020-1029.
[6] 范小杉, 何萍, 董敬儒. 基于项目可持续发展规划的海岸带生态承载力评价研究进展[J]. 地球科学进展, 2017, 32(1): 90-100.
[7] 王聪强, 杨太保, 许艾文, 冀琴, MihretabG.Ghebrezgabher. 近25年唐古拉山西段冰川变化遥感监测[J]. 地球科学进展, 2017, 32(1): 101-109.
[8] 田彪, 丁明虎, 孙维君, 汤洁, 王叶堂, 张通, 效存德, 张东启. 大气CO研究进展[J]. 地球科学进展, 2017, 32(1): 34-43.
[9] 史培军, 王爱慧, 孙福宝, 李宁, 叶涛, 徐伟, 王静爱, 杨建平, 周洪建. 全球变化人口与经济系统风险形成机制及评估研究[J]. 地球科学进展, 2016, 31(8): 775-781.
[10] 焦念志, 李超, 王晓雪. 海洋碳汇对气候变化的响应与反馈[J]. 地球科学进展, 2016, 31(7): 668-681.
[11] 董文杰, 袁文平, 滕飞, 郝志新, 郑景云, 韦志刚, 丑洁明, 刘昌新, 齐天宇, 杨世莉, 阎东东, 张婧. 地球系统模式与综合评估模型的双向耦合及应用[J]. 地球科学进展, 2016, 31(12): 1215-1219.
[12] 裴巧敏, 马玉贞, 胡彩莉, 李丹丹, 郭超, 刘杰瑞. 全球典型地区MIS 5e阶段气候特征研究进展[J]. 地球科学进展, 2016, 31(11): 1182-1196.
[13] 赵进平, 史久新, 王召民, 李志军, 黄菲. 北极海冰减退引起的北极放大机理与全球气候效应[J]. 地球科学进展, 2015, 30(9): 985-995.
[14] 李育, 朱耿睿. 三大自然区过渡地带近50年来气候类型变化及其对气候变化的响应[J]. 地球科学进展, 2015, 30(7): 791-801.
[15] 曹斌, 张廷军, 彭小清, 郑雷, 牟翠翠, 王庆峰. 黑河流域年冻融指数及其时空变化特征分析[J]. 地球科学进展, 2015, 30(3): 357-366.