[1]Hoffman P F, Kaufman A J, Halverson G P, et al. A Neoproterozoic snowball Earth [J]. Science, 1998, 281: 1 342-1 346. [2]Kirschvink J L. Late Proterozoic low-latitude global glaciation: The snowball Earth[A].In: Schopf J W, klein C,eds. The Proterozoic Biosphere[C]. Cambridge University Press, 1992. [3]Hoffman P F, Schrag D P. Snowball Earth [J]. Scientific American, 2000, 282: 62-75. [4]Hoffman P F, Schrag D P, The snowball Earth hypothesis: Testing the limits of global change [J]. Terra Nova, 2002, 14: 129-155. [5]Christie-Blick N, Sohl L E, Kennedy M J. Considering a Neoproterozoic snowball Earth [J]. Science, 1999, 284: 5 417. [6]Schrag D P, Hoffman P F, Hyde W T, et al. Life, geology and snowball Earth [J]. Nature, 2001, 409: 306-307. [7]Harland W B. Rudwick M J S. The great infra-Cambrian ice age [J]. Scientific American, 1964, 211: 28-36. [8]Bodiselitsch B, Koeberl C, Master S, et al. Estimating duration and intensity of Neoproterozoic snowball glaciations from Ir anomalies [J]. Science, 2005, 308: 239-242. [9]Higgins J A, Schrag D P. Aftermath of a snowball Earth [J]. Geochemical Geophysical Geosystem, 2003, 4(3): doi:10.1029/2002GC000403. [10]Pierrehumbert P T. Climate dynamics of a hard snowball Earth [J]. Journal of Geophysical Research, 2005, 110: doi:10.1029/2004JD005162. [11]Kennedy M J, Christie-Blick N, Sohl L E. Are Proterozoic cap carbonates and isotopic excursions a record of gas hydrate destabilization following Earth's coldest intervals [J]. Geology, 2001, 29: 443-446. [12]Knoll A H. Life on a Young Planet: The First Three Billion Years of Evolution on Earth [M]. Princeton: Princeton University Press,2003. [13]Pierrehumbert P T. The hydrological cycle in deep-time climate problems [J]. Nature,2002, 419: 191-198. [14]Kennedy M J, Christie-Blick N, Prave A R. Carbon isotopic composition of Neoproterozoic glacial carbonates as a test of paleoceanographic models for snowball Earth phenomena [J].Geology,2001, 29: 1 135-1 138. [15]Williams G E. Late Precambrian glacial climate and the Earth's obliquity [J]. Geological Magazine, 1975, 112: 441-444. [16]Williams G E. History of the Earth's obliquity [J]. Earth-Science Review,1993, 34: 1-45. [17]Williams D M, Kasting J F, Frakes L A. Low-latitude glaciation and rapid changes in the Earth's obliquity explained by obliquity-oblateness feedback [J]. Nature, 1998, 396: 453-455. [18]Williams G E. Geological constraints on the Precambrian history of the Earth's rotation and the Moon's orbit [J]. Review of Geophysical, 2000, 38: 37-59. [19]Laskar J, Joutel F, Robutel P. Stabilization of the Earth's obliquity by the Moon [J]. Nature, 1993, 361: 615-617. [20]Donnadieu Y, Fluteau F, Ramstein G, et al. Is high obliquity a plausible cause for Neoproterozoic glaciations?[J].Geophysical Research Letter, 2002, 29: doi:10.1029/2002GL015902. [21]Levrard B, Laskar J. Climate friction and the Earth's obliquity [J]. Geophysical Journal International,2003, 154: 970-990. [22]Ramstein G, Donnadieu Y, Godderis Y. Proterozoic glaciations [J]. Comptes Rendus Geoscience,2004, 336: 639-646. [23]Hoffman P F, Maloof A C. Glaciation the snowball theory still holds water [J]. Nature,1999, 397: 384-387. [24]Runnegar B. Loophole for snowball Earth [J].Nature,2000, 405: 403-404. [25]Hyde W T, Crowley T J, Baum S K, et al. Neoproterozoic “snowball Earth” simulations with a coupled climate/ice-sheet model [J]. Nature, 2000, 405: 425-429. [26]Budyko M I. Polar ice and climate [A]. In:Fletcher J O, ed. Proceedings of the Symposium on the Arctic Heat and Budget and Atmospheric Circulation[C].Santa Monica, CA: The Rand Corp,1966.3-21. [27]Budyko M I. The effect of solar radiation variations on the climate of the Earth [J]. Tellus, 1969, 21: 611-619. [28]Sellers W D. A global climatic model based on the energy balance of the Earth-atmosphere system [J]. Journal of Applied Meteorology,1969, 8: 392-400. [29]North G R. Analytical solution to a simple climate model with diffusive heat transport [J]. Journal of the Atmospheric Sciences, 1975, 32: 1 301-1 307. [30]North G R. Theory of energy-balance climate models [J]. Journal of the Atmospheric Sciences,1975, 32: 2 033-2 043. [31]North G R, Cahalan R F, Coakley J A. Energybalance climate models [J]. Reviews of Geophysics Space Physics,1981, 19: 91-121. [32]Ghil M, Childress S. Topics in Geophysical Fluid Dynamics: Atmospheric Dynamics, Dynamo Theory, and Climate Dynamics [M]. New York: Springer-Verlag, 1986. [33]Kargel J S, Strom R.G. Global climate change on Mars [J]. Scientific American,1996, 275: 80-88. [34]Leovy C. Weather and climate on Mars [J]. Nature, 2001, 412: 245-249. [35]Betts A K, Ridgway W. Climatic equilibrium of the atmospheric convective boundary layer over a tropical ocean [J].Journal of the Atmospheric Science,1989, 46: 2 621-2 641. [36]Crowley T J, North G R. Paleoclimatology[M]. Oxford: Oxford University Press, 1991. [37]Sellwood B W, Price G D, Valdes P J. Cooler estimates of Cretaceous temperatures [J]. Nature, 1994, 370: 453-455. [38]Guilderson T P, Fairbanks R G, Rubenstone J L. Tropical temperature variations since 20,000 years ago: Modulating interhemispheric climate change [J]. Science, 1994, 263: 663-665. [39]Crowley T J, Baum S K. Effect of decreased solar luminosity on late Precambrian ice extent [J]. Journal of Geophysical Research, 1993, 98: 16 723-16 732. [40]Jenkins G S, Smith S R. GCM simulations of snowball Earth conditions during the late Proterozoic [J]. Geophysical Research Letter, 1999, 26: 2 263-2 266. [41]Chandler M A, Sohl L E. Climate forcings and the initiation of low-latitude ice sheets during the Neoproterozoic Varanger glacial interval [J]. Journal of Geophsical Research, 2000, 105: 20 737-20 756. [42]Poulsen C J, Pierrehumbert P T, Jacob R L. Impact of ocean dynamics on the simulation of the Neoproterozoic “snowball Earth”[J]. Geophysical Research Letter,2001, 28: 1 575-1 578. [43]Donnadieu Y, Fluteau F, Ramstein G, et al. Is there a confict between the Neoproterozoic glacial deposits and the snowball Earth interpretation: An improved understanding with numerical modeling [J]. Earth and Planetery Science Letter,2003, 208: 101-112. [44]Donnadieu Y, Ramstein G, Fluteau F, et al. The impact of atmospheric and oceanic heat transports on the sea-ice-albedo instability during the Neoproterozoic [J]. Climate Dynamics, 2004, 22: 293-306. [45]Lewis J P, Weaver A J, Johnson S T, et al. Neoproterozoic “snowball Earth”: Dynamic sea ice over a quiescent ocean [J]. Paleoceanography, 2003, 18: doi:10.1029/2003PA000926. [46]Lewis J P, Eby M, Weaver A J, et al.Global glaciation in the Neoproterozoic:Reconciling previous modeling results[J]. Geophysical Research Letter,2004,31:doi:10.1029/2004GL019725. [47]Caldeira K, Kasting J F. Susceptibility of the early Earth to irreversible glaciation caused by carbon dioxide clouds [J]. Nature,1992, 359: 226-228.[48]Tajika E. Faint young Sun and the carbon cycle: Implication for the Proterozoic global glaciations [J]. Earth and Planetery Science Letter, 2003, 214: 443-453. [49]Pierrehumbert P T. High levels of atmospheric carbon dioxide necessary for the termination of global glaciation [J]. Nature, 2004, 429: 646-649. [50]Lindzen R S. Climate dynamics and global change [J]. Annual Review of Fluid Mechanics, 1994, 26: 353-378. [51]Hu Y, Tung K, Liu J. A closer comparison of early and late winter atmospheric trends in the Northern-Hemisphere [J].Journal of Climate,2005,18:2 924-2 936. [52]Forget F, Pierrehumbert R T. Warming early Mars with carbon dioxide clouds and scatter infrared radiation [J].Science,1997, 278: 1 273-1 276. |