地球科学进展 ›› 2000, Vol. 15 ›› Issue (4): 453 -460. doi: 10.11867/j.issn.1001-8166.2000.04.0453

全球变化研究 上一篇    下一篇

温室气体浓度变化及其源与汇研究进展
刘 强,刘嘉麒,贺怀宇   
  1. 中国科学院地质与地球物理研究所,北京 100029
  • 收稿日期:1999-08-18 修回日期:1999-11-23 出版日期:2000-08-01
  • 通讯作者: 刘强(1971-),男,重庆开县人,博士研究生,主要从事第四纪地质与环境同位素地球化学研究。
  • 基金资助:

    国家自然科学基金重大项目“中国季风区古环境演变机制及其与全球变化的动力学联系”(编号:49894172);国家自然科学基金项目“南极南设得兰群岛中新生代以来的地质演化与环境变迁”(编号:49673176);中国科学院重大Ⅱ级项目“历史时期自然环境背景与人类活动效应”(编号:KZ951-A1-402-06)资助。

RESEARCH ADVANCES ON CONCENTRATION CHANGE OF GREENHOUSE GASES AND THEIR SOURCE&SINK

LIU Qiang,LIU Jia-qi,HE Huai-yu   

  1. Institute of Geology and Geophysics,Chinese Academy of Sciences,Beijing100029,China
  • Received:1999-08-18 Revised:1999-11-23 Online:2000-08-01 Published:2000-08-01

对工业革命以来大气中主要温室气体浓度变化和增长趋势作了简介。概述了冰芯研究的最新成果:420 ka BP以来CO2浓度变化情况及其揭示的气候变化机制;全新世期间CH4浓度的波动;气候事件中N2O浓度的快速波动及工业化前的水平。总结了全球温室气体源与汇的研究现状,重点介绍了全球碳循环研究中的未知汇问题,列举了根据不同资料和模型估计的陆地碳汇位置和幅度以及影响因素对陆地碳汇的贡献等认识上的差异。简单介绍了国内有关温室气体源与汇研究,如稻田CH4排放、岩溶系统碳循环和黄土中温室气体组分特征等方面的研究成果和认识。

Since industrial revolution, greenhouse gases concentrations at atmosphere increased continually. Some new progresses in the study on concentration change of major greenhouse gases have been achieved from ice-core record such as last four glacial-interglacial cycles record of carbon dioxide concentration. New knowledge concerning to early Holocene carbon dioxide concentration, concentration variation of methane during Holocene and abrupt change of nitrous oxide concentration have been revealed. These new results present good choice to study relationship between concentration variation of greenhouse gases and climate change, which can help to understand mechanism of climate change. To study source and sink of greenhouse gases is basis for prediction of future climate change. The missing sink of global carbon cycle attracted more attention. According to different models and data, there is large difference on magnitude and location of estimated carbon sink in terrestrial biosphere. In China, some studies on greenhouse gases emission and sequestration such as methane emission from rice paddy, carbon cycle in karst processes and feature of major greenhouse gases in loess have been carried out.

中图分类号: 

[1]Houghton J.全球变暖[M].戴晓苏,石广玉,董敏,等译.北京:气象出版社,1998.
[2]IPCC. Climate Change: The IPCC Scientific Assessment[R].Houghton J T, Jenkins G J, Ephraunms J J, eds. Cambridge:Cambridge University Press, 1990.
[3]IPCC. Climate Change 1995: The Science of Climate Change[R]. Houghton J T, Meira Filho L G, Callander B A,et al.eds. Cambridge: Cambridge University Press, 1996.
[4]Keeling C D, Whorf T P, Wahlen M,et al. Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980[J]. Nature, 1995, 375: 666~670.
[5]Blake D R, Meyer R E, Tyler S,et al. Global increase of atmospheric methane concentration between 1978 and 1980[J].Geophysics Research Letters, 1982, 82: 477~480.
[6]Dlugokencky E J, Massarie K A, Lang P M,et al. Continuing decline in the growth rate of the atmospheric methane burden[J]. Nature, 1998, 393: 447~450.
[7]Khalil M A K, Rasmussen R A. Nitrous oxide: trends and global mass balance over the last 3000 years[J]. Annals of Glaciology, 1988, 10: 73~79.
[8]Butler J H, Battle M, Bender M L,et al. A record of atmospheric halocarbons during the twentieth century from polar firn air[J]. Nature, 1999, 399: 749~755.
[9]Delmas R J, Ascencio J M, Legrand M. Polar ice evidence that atmospheric CO2 20 ka BP was 50% of present[J]. Nature, 1980, 284: 155~157.
[10]Neftel A, Oeschger H, Schwander J,et al. Ice core sample measurements give atmospheric CO2 content during the past 40,000 a[J]. Nature, 1982, 295: 220~223.
[11]Neftel A,Moor E,Oeschger H,et al. Evidence from polar ice cores for the increase in atmospheric CO2 in the past two centuries[J]. Nature, 1985, 315: 45~47.
[12]Lorius C, Jouzel J, Ritz C,et al. A 150 000-year climatic record from Antarctic ice[J]. Nature, 1985, 316: 591~596.
[13]Raynaud D, Barnola J M. An Antarctic ice core reveals atmospheric CO2 variations over the past few centuries[J]. Nature, 1985, 315: 309~311.
[14]Pearman G L, Etheridge D, Desilva F,et al. Evidence of changing concentrations of CO2 ,N2O and CH4 from air bubbles in Antarctic ice[J]. Nature, 1986, 320: 248~250.
[15]Barnola J M,Raynaud D,Korotkevich Y S,et al. Vostok ice core provides 160,000-year record of atmospheric CO2 [J].Nature, 1987, 329: 408~414.
[16]Jouzel J, Barkov N I, Barnola J M,et al. Extending the Vostok ice-core record of palaeoclimate to the penultimate glacial period[J]. Nature, 1993, 364: 407~412.
[17]Raynaud D, Jouzel J, Barnola J M,et al. The ice record of greenhouse gases[J]. Science, 1993, 259: 926~934.
[18]Fischer H, Wahlen M, Smith J,et al. Ice core records of atmospheric CO2 around the last three glacial terminations[J].Science, 1999, 283: 1 712~1 714.
[19]Petit J R, Raynaud D, Barkov N I,et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica[J]. Nature, 1999, 399: 429~436.
[20]Wagner F, Bohncke S J P, Dilcher D L,et al. Century-scale shifts in early Holocene atmospheric CO2 concentration[J].Science, 1999, 284: 1 971~1 973.
[21]Stauffer B, Fischer G, Neftel A,et al. Increase of atmospheric methane recorded in Antarctic ice core[J]. Science,1985, 229: 1 386~1 388.
[22]Raynaud D, Chappellaz J, Barnola J M,et al. Climatic and CH4 cycle implications of glacial-interglacial CH4 change in the Vostok ice core[J]. Nature, 1988, 333: 655~657.
[23]Chappellaz J, Barnola J M, Raynaud D,et al. Ice-corerecord of atmospheric methane over the past 160,000 years[J]. Nature, 1990, 345: 127~131.
[24]Blunler T, Chappellaz J, Schwander J,et al. Variations in atmospheric methane concentration during the Holocene epoch[J]. Nature, 1995, 374: 46~49.
[25]Brook E J, Sowers T, Orchardo J. Rapid variations in atmospheric methane concentration during the past 110,000 years[J]. Science, 1996, 273: 1 087~1 091.
[26]Fluckiger J, Dallenbach A, Blunier T,et al. Variations in atmospheric N2O concentration during abrupt climatic changes[J]. Science, 1999, 285: 227~230.
[27]Sundquist E T. The global carbon dioxide budget[J]. Science, 1993, 259: 934~941.
[28]Schindler D W. The mysterious missing sink[J]. Nature,1999, 398: 105~106.
[29]Tans P P, Fung I Y, Takahashi T. Observational constraints on the global atmospheric CO2 budget[J]. Science,1990, 247: 1 431~1 438.
[30]Ciais P, Tans P P, Trolier M,et al. A large Northern hemisphere terrestrial CO2sink indicated by the13C/12C ratio of atmospheric CO2 [J]. Science, 1995, 269: 1 098~1 102.
[31]Keeling R F, Piper S, Heimann M. Global and hemispheric CO2 sinks deduced from changes in atmospheric O2 concen-tration[J]. Nature, 1996, 381: 218~221.
[32]Mynenl R B, Keeling C D, Tucker C J,et al. Increased plant growth in the northern high latitudes from 1981 to 1991[J].Nature, 1997, 386: 698~702.
[33]Fan S, Gloor M, Mahlman J,et al. North American carbon sink[J]. Science, 1999, 283: 1815a.
[34]Fan S, Gloor M, Mahlman J,et al. A large terrestrial carbon sink in North America implied by atmospheric and oceanic carbon dioxide data and models[J]. Science, 1998, 282:442~446.
[35]Dixon R K, Brown S, Houghton R A,et al. Carbon pools and flux of global forest ecosystems [J]. Science, 1994,263: 185~190.
[36]Holland E A, Braswell B H, Lamarque J F,et al.Variations in the predicted spatial distribution of atmospheric nitrogen deposition and their impact on carbon uptake by terrestrial ecosystems[J]. Journal of Geophysical Research, 1997, 102(D13): 15 849~15 866.
[37]Cao M K, Woodward F I. Dynamic responses of terrestrial ecosystem carbon cycling to global climate change[J]. Nature, 1998, 393: 249~252.
[38]Holland E, Brown S. North American carbon sink[J]. Science, 1999, 283: 1815a.
[39]Houghton R A, Hackler J L, Lawrence. The U S carbon budget: contributions from land-use change[J]. Science,1999, 285: 574~578.
[40]Potter C S, Klooster S A. North American carbon sink[J].Science, 1999, 283: 1815a.
[41]Francey R J, Tans P P, Allison C E,et al. Changes in oceanic and terrestrial carbon uptake since 1982[J]. Nature,1995, 373: 326~330.
[42]Kaiser J. New network aims to take the world' s CO2 pulse [J]. Science, 1998, 281: 506~507.
[43]Martin P. Estimating the CO2 uptake in Europe[J]. Science,1998, 281: 1 805.
[44]Delucia E, Hamilton J G, Naidu S,et al. Net primary production of a forest ecosystem with experimental CO2 enrichment[J]. Science, 1999, 284: 1 177~1 179.
[45]Hudson R J M, Gherini S A, Goldsein R A. Modeling the global carbon cycle: nitrogen fertilization of the terrestrial biosphere and the“missing”CO2 sink[J]. Global Biogeochemical Cycles, 1994, 8(3): 307~333.
[46]Nedelhoffer K, Emmett B A, Gundersent P,et al. Nitrogen deposition makes a minor contribution to carbon sequestration in temperate forests[J]. Nature, 1999, 398: 145~148.
[47]Jenkinson D S, Goulding K, Powlson D S. Nitrogen deposition and carbon sequestration[J]. Nature, 1999, 400: 629.
[48]Sievering H. Nitrogen deposition and carbon sequestration[J]. Nature, 1999, 400: 629~630.
[49]Dore J E, Popp B N, Karl D M,et al. A large source of atmospheric nitrous oxide from subtropical North Pacific surface waters[J]. Nature, 1998, 396: 63~66.
[50]王明星主编.全球气候变暖[M].济南:山东科学技术出版社,1996.
[51]袁道先.碳循环与全球岩溶[J].第四纪研究,1993,(1):1~6.
[52]Jiang Zhongcheng, Yuan Daoxian. CO2 source-sink in karst processes in karst areas of China[J]. Episodes, 1999, 21(1): 33~35.
[53]袁道先.“岩溶作用与碳循环”研究进展[J].地球科学进展,1999,14(5):425~432.
[54]郑乐平,万国江,黎廷宇,等.黔中岩溶地区草地与乔木林土壤CO2 运移及源汇效应的初步研究[A].见:中国科学院地球化学研究所等编.资源环境与可持续发展[C].北京:科学出版社,1999. 177~182.
[55]沈承德,易惟熙,刘东生. CO2 全球循环及其同位素示踪研究[J].第四纪研究,1995,(1):53~62.
[56]刘嘉麒,钟华,刘东生.渭南黄土中温室气体组分的初步研究[J].科学通报,1996,41(24):2 257~2 260.
[57]刘强,刘嘉麒.北京斋堂黄土中主要温室气体组分特征[J].第四纪研究,1999,(5):478.
[58]陈冠雄,黄斌,黄国宏,等.我国一些典型陆地生态系统N2O和CH4的排放[A].见:丁一汇主编.中国的气候变化与气候影响研究[C].北京:气象出版社,1997. 71~77.
[59]林而达,李玉娥.农业对土壤吸收CH4与排放N2O的影响[A].见:丁一汇主编.中国的气候变化与气候影响研究[C].北京:气象出版社,1997. 78~83.
[60]刘允芬.中国农业系统碳汇功能[J].农业环境保护,1998,17(5):197~202.
[61]石广玉,丁一汇,张鹏,等.中国森林CO2 释放与吸收的评估[A].见:丁一汇主编.中国的气候变化与气候影响研究[C].北京:气象出版社,1997. 85~94.

[1] 郑聚锋, 潘根兴, 程琨, 张旭辉. 从《IPCC 2006 国家温室气体排放清单增补:2013湿地》谈湿地温室气体计量进展及问题[J]. 地球科学进展, 2014, 29(10): 1120-1125.
[2] 张介霞, 詹力扬, 陈立奇. 南大洋N 2O研究进展及测量新技术展望 *[J]. 地球科学进展, 2013, 28(11): 1201-1208.
[3] 赵吉,李靖宇,周玉,白玉涛,于景丽. 甲烷氧化与氨氧化微生物及其耦合功能[J]. 地球科学进展, 2012, 27(6): 651-659.
[4] 张茂亮,郭正府,成智慧,张丽红,郭文峰. 火山区温室气体排放研究进展[J]. 地球科学进展, 2011, 26(12): 1235-1247.
[5] 陈中笑,赵琦. 全球碳循环研究中的δ 13C方法及其进展[J]. 地球科学进展, 2011, 26(11): 1225-1233.
[6] 曾静静,曲建升,张志强. 国际温室气体减排情景方案比较分析[J]. 地球科学进展, 2009, 24(4): 436-443.
[7] 胡永云,丁 峰,夏 炎. 全球变化条件下的平流层大气长期变化趋势[J]. 地球科学进展, 2009, 24(3): 242-251.
[8] 曲建升,曾静静,张志强. 国际主要温室气体排放数据集比较分析研究[J]. 地球科学进展, 2008, 23(1): 47-54.
[9] 李迎春,林而达,甄晓林. 农业温室气体清单方法研究最新进展[J]. 地球科学进展, 2007, 22(10): 1076-1080.
[10] 胡永云;闻新宇. 冰雪地球的研究进展综述[J]. 地球科学进展, 2005, 20(11): 1226-1233.
[11] 曲建升;孙成权. 温室气体减排:过去,现在与未来———俄罗斯批准《京都议定书》使国际气候行动出现新转折[J]. 地球科学进展, 2004, 19(6): 1052-1053.
[12] 刘强;王跃思;王明星. 北京地区大气主要温室气体的季节变化[J]. 地球科学进展, 2004, 19(5): 817-823.
[13] 王宁练;姚檀栋;邵雪梅. 温室气体与气候:过去变化对未来的启示[J]. 地球科学进展, 2001, 16(6): 821-828.
[14] 李玉娥,林而达. 土壤甲烷吸收汇研究进展[J]. 地球科学进展, 1999, 14(6): 613-618.
[15] 李玉娥,林而达. 土壤甲烷吸收汇研究进展[J]. 地球科学进展, 1999, 14(6): 613-618.
阅读次数
全文


摘要