[1]Houghton J.全球变暖[M].戴晓苏,石广玉,董敏,等译.北京:气象出版社,1998. [2]IPCC. Climate Change: The IPCC Scientific Assessment[R].Houghton J T, Jenkins G J, Ephraunms J J, eds. Cambridge:Cambridge University Press, 1990. [3]IPCC. Climate Change 1995: The Science of Climate Change[R]. Houghton J T, Meira Filho L G, Callander B A,et al.eds. Cambridge: Cambridge University Press, 1996. [4]Keeling C D, Whorf T P, Wahlen M,et al. Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980[J]. Nature, 1995, 375: 666~670. [5]Blake D R, Meyer R E, Tyler S,et al. Global increase of atmospheric methane concentration between 1978 and 1980[J].Geophysics Research Letters, 1982, 82: 477~480. [6]Dlugokencky E J, Massarie K A, Lang P M,et al. Continuing decline in the growth rate of the atmospheric methane burden[J]. Nature, 1998, 393: 447~450. [7]Khalil M A K, Rasmussen R A. Nitrous oxide: trends and global mass balance over the last 3000 years[J]. Annals of Glaciology, 1988, 10: 73~79. [8]Butler J H, Battle M, Bender M L,et al. A record of atmospheric halocarbons during the twentieth century from polar firn air[J]. Nature, 1999, 399: 749~755. [9]Delmas R J, Ascencio J M, Legrand M. Polar ice evidence that atmospheric CO2 20 ka BP was 50% of present[J]. Nature, 1980, 284: 155~157. [10]Neftel A, Oeschger H, Schwander J,et al. Ice core sample measurements give atmospheric CO2 content during the past 40,000 a[J]. Nature, 1982, 295: 220~223. [11]Neftel A,Moor E,Oeschger H,et al. Evidence from polar ice cores for the increase in atmospheric CO2 in the past two centuries[J]. Nature, 1985, 315: 45~47. [12]Lorius C, Jouzel J, Ritz C,et al. A 150 000-year climatic record from Antarctic ice[J]. Nature, 1985, 316: 591~596. [13]Raynaud D, Barnola J M. An Antarctic ice core reveals atmospheric CO2 variations over the past few centuries[J]. Nature, 1985, 315: 309~311. [14]Pearman G L, Etheridge D, Desilva F,et al. Evidence of changing concentrations of CO2 ,N2O and CH4 from air bubbles in Antarctic ice[J]. Nature, 1986, 320: 248~250. [15]Barnola J M,Raynaud D,Korotkevich Y S,et al. Vostok ice core provides 160,000-year record of atmospheric CO2 [J].Nature, 1987, 329: 408~414. [16]Jouzel J, Barkov N I, Barnola J M,et al. Extending the Vostok ice-core record of palaeoclimate to the penultimate glacial period[J]. Nature, 1993, 364: 407~412. [17]Raynaud D, Jouzel J, Barnola J M,et al. The ice record of greenhouse gases[J]. Science, 1993, 259: 926~934. [18]Fischer H, Wahlen M, Smith J,et al. Ice core records of atmospheric CO2 around the last three glacial terminations[J].Science, 1999, 283: 1 712~1 714. [19]Petit J R, Raynaud D, Barkov N I,et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica[J]. Nature, 1999, 399: 429~436. [20]Wagner F, Bohncke S J P, Dilcher D L,et al. Century-scale shifts in early Holocene atmospheric CO2 concentration[J].Science, 1999, 284: 1 971~1 973. [21]Stauffer B, Fischer G, Neftel A,et al. Increase of atmospheric methane recorded in Antarctic ice core[J]. Science,1985, 229: 1 386~1 388. [22]Raynaud D, Chappellaz J, Barnola J M,et al. Climatic and CH4 cycle implications of glacial-interglacial CH4 change in the Vostok ice core[J]. Nature, 1988, 333: 655~657. [23]Chappellaz J, Barnola J M, Raynaud D,et al. Ice-corerecord of atmospheric methane over the past 160,000 years[J]. Nature, 1990, 345: 127~131. [24]Blunler T, Chappellaz J, Schwander J,et al. Variations in atmospheric methane concentration during the Holocene epoch[J]. Nature, 1995, 374: 46~49. [25]Brook E J, Sowers T, Orchardo J. Rapid variations in atmospheric methane concentration during the past 110,000 years[J]. Science, 1996, 273: 1 087~1 091. [26]Fluckiger J, Dallenbach A, Blunier T,et al. Variations in atmospheric N2O concentration during abrupt climatic changes[J]. Science, 1999, 285: 227~230. [27]Sundquist E T. The global carbon dioxide budget[J]. Science, 1993, 259: 934~941. [28]Schindler D W. The mysterious missing sink[J]. Nature,1999, 398: 105~106. [29]Tans P P, Fung I Y, Takahashi T. Observational constraints on the global atmospheric CO2 budget[J]. Science,1990, 247: 1 431~1 438. [30]Ciais P, Tans P P, Trolier M,et al. A large Northern hemisphere terrestrial CO2sink indicated by the13C/12C ratio of atmospheric CO2 [J]. Science, 1995, 269: 1 098~1 102. [31]Keeling R F, Piper S, Heimann M. Global and hemispheric CO2 sinks deduced from changes in atmospheric O2 concen-tration[J]. Nature, 1996, 381: 218~221. [32]Mynenl R B, Keeling C D, Tucker C J,et al. Increased plant growth in the northern high latitudes from 1981 to 1991[J].Nature, 1997, 386: 698~702. [33]Fan S, Gloor M, Mahlman J,et al. North American carbon sink[J]. Science, 1999, 283: 1815a. [34]Fan S, Gloor M, Mahlman J,et al. A large terrestrial carbon sink in North America implied by atmospheric and oceanic carbon dioxide data and models[J]. Science, 1998, 282:442~446. [35]Dixon R K, Brown S, Houghton R A,et al. Carbon pools and flux of global forest ecosystems [J]. Science, 1994,263: 185~190. [36]Holland E A, Braswell B H, Lamarque J F,et al.Variations in the predicted spatial distribution of atmospheric nitrogen deposition and their impact on carbon uptake by terrestrial ecosystems[J]. Journal of Geophysical Research, 1997, 102(D13): 15 849~15 866. [37]Cao M K, Woodward F I. Dynamic responses of terrestrial ecosystem carbon cycling to global climate change[J]. Nature, 1998, 393: 249~252. [38]Holland E, Brown S. North American carbon sink[J]. Science, 1999, 283: 1815a. [39]Houghton R A, Hackler J L, Lawrence. The U S carbon budget: contributions from land-use change[J]. Science,1999, 285: 574~578. [40]Potter C S, Klooster S A. North American carbon sink[J].Science, 1999, 283: 1815a. [41]Francey R J, Tans P P, Allison C E,et al. Changes in oceanic and terrestrial carbon uptake since 1982[J]. Nature,1995, 373: 326~330. [42]Kaiser J. New network aims to take the world' s CO2 pulse [J]. Science, 1998, 281: 506~507. [43]Martin P. Estimating the CO2 uptake in Europe[J]. Science,1998, 281: 1 805. [44]Delucia E, Hamilton J G, Naidu S,et al. Net primary production of a forest ecosystem with experimental CO2 enrichment[J]. Science, 1999, 284: 1 177~1 179. [45]Hudson R J M, Gherini S A, Goldsein R A. Modeling the global carbon cycle: nitrogen fertilization of the terrestrial biosphere and the“missing”CO2 sink[J]. Global Biogeochemical Cycles, 1994, 8(3): 307~333. [46]Nedelhoffer K, Emmett B A, Gundersent P,et al. Nitrogen deposition makes a minor contribution to carbon sequestration in temperate forests[J]. Nature, 1999, 398: 145~148. [47]Jenkinson D S, Goulding K, Powlson D S. Nitrogen deposition and carbon sequestration[J]. Nature, 1999, 400: 629. [48]Sievering H. Nitrogen deposition and carbon sequestration[J]. Nature, 1999, 400: 629~630. [49]Dore J E, Popp B N, Karl D M,et al. A large source of atmospheric nitrous oxide from subtropical North Pacific surface waters[J]. Nature, 1998, 396: 63~66. [50]王明星主编.全球气候变暖[M].济南:山东科学技术出版社,1996. [51]袁道先.碳循环与全球岩溶[J].第四纪研究,1993,(1):1~6. [52]Jiang Zhongcheng, Yuan Daoxian. CO2 source-sink in karst processes in karst areas of China[J]. Episodes, 1999, 21(1): 33~35. [53]袁道先.“岩溶作用与碳循环”研究进展[J].地球科学进展,1999,14(5):425~432. [54]郑乐平,万国江,黎廷宇,等.黔中岩溶地区草地与乔木林土壤CO2 运移及源汇效应的初步研究[A].见:中国科学院地球化学研究所等编.资源环境与可持续发展[C].北京:科学出版社,1999. 177~182. [55]沈承德,易惟熙,刘东生. CO2 全球循环及其同位素示踪研究[J].第四纪研究,1995,(1):53~62. [56]刘嘉麒,钟华,刘东生.渭南黄土中温室气体组分的初步研究[J].科学通报,1996,41(24):2 257~2 260. [57]刘强,刘嘉麒.北京斋堂黄土中主要温室气体组分特征[J].第四纪研究,1999,(5):478. [58]陈冠雄,黄斌,黄国宏,等.我国一些典型陆地生态系统N2O和CH4的排放[A].见:丁一汇主编.中国的气候变化与气候影响研究[C].北京:气象出版社,1997. 71~77. [59]林而达,李玉娥.农业对土壤吸收CH4与排放N2O的影响[A].见:丁一汇主编.中国的气候变化与气候影响研究[C].北京:气象出版社,1997. 78~83. [60]刘允芬.中国农业系统碳汇功能[J].农业环境保护,1998,17(5):197~202. [61]石广玉,丁一汇,张鹏,等.中国森林CO2 释放与吸收的评估[A].见:丁一汇主编.中国的气候变化与气候影响研究[C].北京:气象出版社,1997. 85~94. |