地球科学进展 ›› 2000, Vol. 15 ›› Issue (4): 446 -452. doi: 10.11867/j.issn.1001-8166.2000.04.0446

全球变化研究 上一篇    下一篇

陆地生态系统与气候相互作用的研究进展
曹明奎 ,李克让   
  1. ①马里兰大学地理系,美国;②中国科学院地理科学与资源研究所,北京 100101
  • 收稿日期:1999-10-13 修回日期:2000-01-10 出版日期:2000-08-01
  • 通讯作者: 曹明奎(1963-),男,山西人,博士,访问学者,主要从事全球生态系统与气候相互作用的动力学模型研究。
  • 基金资助:

    科技部国家重点科技攻关项目“全球气候变化及其影响的若干科学问题研究”(编号:96-911-01)资助。

PERSPECTIVE ON TERRESTRIAL ECOSYSTEM-CLIMATE INTERACTION

CAO Ming-kui ,LI Ke-rang
  

  1. ①Department of Geography,University of Maryland,Maryland,US;②Institute of Geography,CAS,Beijing 100101,China
  • Received:1999-10-13 Revised:2000-01-10 Online:2000-08-01 Published:2000-08-01

陆地生态系统与气候系统通过地面与大气之间能量平衡、水汽交换和生物地球化学循环相互作用,影响大气中温室气体浓度和气溶胶,继而影响气候变化。较系统分析总结了当代国际上陆地生态系统与气候相互作用的最新研究进展。首先介绍了陆地生态系统与气候相互作用的机制与过程,总结了陆地生态系统与气候相互作用研究的三个发展阶段,以及当代相互作用的过程模拟研究中三类主要的全球生态系统模型,即生物物理模型、生物地理模型和生物地球化学模型。并介绍了气候对生态系统变化的响应,即两种主要的反馈机制。最后,对未来的研究方向和重点作了分析。

Terrestrial ecosystems and climatic systems influence each other through biophysical processes that involve the transfers of energy and water at the land surface and biogeochemical cycles that affect the concentrations of greenhouse gases and aerosols in the atmosphere. Studies of ecosystem-climate interactions have evolved from uses of land surface parameterizations (LSPs) to sensitivity analysis of climatic responses to equilibrium ecosystem changes and to dynamic, interactive coupling of ecosystem and climatic processes. System modeling is the most important means to study ecosystem-climate interactions.
The global ecosystem models that have been used in the studies can be classified into biophysical, biogeography, and biogeochemical types.Ecosystem changes as a whole in the past have accelerated warming by increasing the emissions of CO2, CH4, and N2O and reducing the regulation of vegetation to water cycling.Ecosystem negative feed-backs on climate have emerged with increases in CO2sequestration and the stabilization of CH4emissions,but continued increases in anthropogenic N2fixation may greatly enhance N2O emissions. To quantify accurately the feedback effects requires investigations of the dynamic ecosystem-climate interactions at seasonal and interannual scales. Future studies should focus on both developing integrated dynamic ecosystem models (IDEM) that can describing both functional and structural changes and coupling biophysical and biogeochemical processes and observing large-scale, long-term ecosystem changes. The observations are essential for deepening understanding of ecosystem-climate interactions and validate global ecosystem models.

中图分类号: 

[1]Tans P P, Fung I Y, Takahashi T. Observational constraints on the global atmospheric CO2budget[J]. Science, 1990,247: 1 431~1 438.
[2]Prentice I C, Cramer W, Harrison S P,et al. A global biome model based on plant physiology and dominance, soil properties, and climate [J]. Journal of Biogeography, 1992, 19: 117~134.
[3]Neilson R P. A model for predicting continental-scale vegetation distribution and water balance [J]. Ecol Appl, 1995, 5:362~385.
[4]Parton W J, Scurlock J M O, Ojima D S. Observations and modeling of biomass and soil organic matter dynamics for the grassland biome worldwide[J]. Global Biogeochemical Cycles, 1993,7: 785~809.
[5]Raich J W, Rastetter E B, Melillo J M,et al. Potential net primary productivity in southern America: application of a global model [J]. Ecological Application, 1991, 1: 399~429.
[6]Smith T M, Shugart HH. The transient response of terrestrial carbon storage to a perturbed climate[J]. Nature, 1993,361: 523~526.
[7]Woodward F I, Lomas M R, Betts R A. Vegetation-climate feedbacks in greenhouse world [J]. Philosophical Transactions of the Royal Society, 1998,353B: 29~39.
[8]Sellers P J, Bounoua L, Collatz G L,et al. Comparison of radiative and physiological effects of doubled atmospheric CO2on climate [J]. Science, 1996, 271: 1 402~1 406.
[9]Betts R A, Cox P M, Lee S E,et al. Contrasting physiological and structural vegetation feedbacks in climate change simulation [J]. Nature, 1997,387: 796.
[10]Running S W, Gower S T. FOREST-BGC, a general model of forest ecosystem processes for regional application,II, dynamic carbon allocation and nitrogen budgets [J]. Tree Physiol, 1991,9: 147~160.
[11]Woodward F I, Smith T M, Emanuel W R. A global land primary productivity and phytogeography model [J]. Global Biogeochemical Cycles, 1995,9: 471~490.
[12]Cao M K, Woodward F I. Dynamic responses of terrestrial ecosystem carbon cycling to global climate change [J]. Nature, 1998, 393: 249~252.
[13]Cao M K, Woodward F I. Net primary and ecosystem production and carbon stocks of terrestrial ecosystems and their response to climatic change [J], Global Change Biology,1998, 4:185~198.
[14]Cao M K, Gregson K, Marshall S. Methane emission from wetlands and its sensitivity to climate change [J], Atmospheric Environment, 1998,32: 3 293~3 299.
[15]Shugart H H, Smith T M, Post W M. The application of individual-based simulation model for assessing the effects of global change [J] . Annu Rev Ecol Systematics, 1992,23:15~38.
[16]Foley J A, Prentice I C, Ramankutty N,et al. An integrated biosphere model of land-surface processes, terrestrial carbon balance, and vegetation dynamics[J]. Global Biogeochemical Cycles, 1996,10: 603~628.
[17]Friend A D, Stevens A K, Knox R G. A process-based, terrestrial biosphere model of ecosystem dynamics (Hybrid 3.0)[J]. Ecological Modelling, 1997, 95: 249~287.
[18]Tood T L, Schneider S H. Ecology and climate: research strategies and implications [J]. Science, 1995, 269: 334~340.
[19]Cao M K, Marshall S J, Gregson K. Global carbon exchange and methane emission in natural wetlands: an application of a process-based model [J]. J Geophys Res, 1996, 101: 14 399~14 414.
[20]Li C, Frolking S E, Frolking T A. A model of nitrous oxide evolution from soil driven by rainfall events: I model structure and sensitivity [J]. J Geophys Res, 1992, 97: 9 759~9 776.

[1] 单薪蒙, 温家洪, 王军, 胡恒智. 深度不确定性下的灾害风险稳健决策方法评述[J]. 地球科学进展, 2021, 36(9): 911-921.
[2] 段伟利, 邹珊, 陈亚宁, 李稚, 方功焕. 18792015年巴尔喀什湖水位变化及其主要影响因素分析[J]. 地球科学进展, 2021, 36(9): 950-961.
[3] 王澄海, 张晟宁, 张飞民, 李课臣, 杨凯. 论全球变暖背景下中国西北地区降水增加问题[J]. 地球科学进展, 2021, 36(9): 980-989.
[4] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[5] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[6] 姜继兰,刘屹岷,李建平,张人禾. 印度洋偶极子研究进展回顾[J]. 地球科学进展, 2021, 36(6): 579-591.
[7] 庞姗姗, 王喜冬, 刘海龙, 邵彩霞. 热带海洋盐度障碍层多尺度变异机理及其对海气相互作用的影响研究进展[J]. 地球科学进展, 2021, 36(2): 139-153.
[8] 张子洋, 闫明, MULVANEY Robert, 季峻峰, 效存德, 刘雷保, 安春雷. 东南极 LGB69冰芯 17122001年气温变化记录的初步研究[J]. 地球科学进展, 2021, 36(2): 172-184.
[9] 崔林丽, 史军, 杜华强. 植被物候的遥感提取及其影响因素研究进展[J]. 地球科学进展, 2021, 36(1): 9-16.
[10] 龙上敏,刘秦玉,郑小童,程旭华,白学志,高臻. 南大洋海温长期变化研究进展[J]. 地球科学进展, 2020, 35(9): 962-977.
[11] 蔡运龙. 生态问题的社会经济检视[J]. 地球科学进展, 2020, 35(7): 742-749.
[12] 萧凌波. 17361911年华北饥荒的时空分布及其与气候、灾害、收成的关系[J]. 地球科学进展, 2020, 35(5): 478-487.
[13] 熊建国, 李有利, 张培震. 夷平面研究新进展[J]. 地球科学进展, 2020, 35(4): 378-388.
[14] 武登云, 任治坤, 吕红华, 刘金瑞, 哈广浩, 张弛, 朱孟浩. 冲积扇形态与沉积特征及其动力学控制因素:进展与展望[J]. 地球科学进展, 2020, 35(4): 389-403.
[15] 曹天正, 韩冬梅, 宋献方, 刘伟, 杜荻. 滨海地区地表水—地下水相互作用研究进展的文献计量分析[J]. 地球科学进展, 2020, 35(2): 154-166.
阅读次数
全文


摘要