地球科学进展 ›› 2020, Vol. 35 ›› Issue (2): 154 -166. doi: 10.11867/j.issn.1001-8166.2020.018

综述与评述 上一篇    下一篇

滨海地区地表水—地下水相互作用研究进展的文献计量分析
曹天正 1, 2, 3( ),韩冬梅 1, 2, 4( ),宋献方 1, 2, 4,刘伟 5,杜荻 2, 3, 6   
  1. 1.中国科学院地理科学与资源研究所 陆地水循环及地表过程重点实验室,北京 100101
    2.中国科学院 中丹学院,北京 101400
    3.中国—丹麦科研教育中心,北京 101400
    4.中国科学院大学资源与环境学院,北京 100049
    5.奥胡斯大学生物科学学院,锡尔克堡 8600 丹麦
    6.中国科学院生态环境研究中心 城市与区域生态国家重点实验室,北京 100085
  • 收稿日期:2020-01-07 修回日期:2020-02-02 出版日期:2020-02-10
  • 通讯作者: 韩冬梅 E-mail:handm@igsnrr.ac.cn
  • 基金资助:
    中国科学院战略性先导科技专项(A类)“吹填陆域淡化水体的加速形成技术体系与风险管理系统”(XDA13010303);中国科学院青年创新促进会优秀会员项目“河口平原区海水入侵演变机理与调控研究”(2012040)

Bibliometric Analysis of Research Progress on Coastal Surface Water and Groundwater Interaction

Tianzheng Cao 1, 2, 3( ),Dongmei Han 1, 2, 4( ),Xianfang Song 1, 2, 4,Wei Liu 5,Di Du 2, 3, 6   

  1. 1.Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    2.Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101400, China
    3.Sino-Danish Center for Education and Research, Beijing 101400, China
    4.College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
    5.Department of Bioscience, Aarhus University, Aarhus 8600, Denmark
    6.State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
  • Received:2020-01-07 Revised:2020-02-02 Online:2020-02-10 Published:2020-03-24
  • Contact: Dongmei Han E-mail:handm@igsnrr.ac.cn
  • About author:Cao Tianzheng (1994-), male, Baoding City, Hebei Province, Ph.D student. Research areas include coastal groundwater-surface water interaction. E-mail: caotianzheng17@mails.ucas.edu.cn
  • Supported by:
    the Strategic Leading Science & Technology Program of CAS (Type A) “Technology and risk management system of accelerated formation of fresh water lens in reclamation land”(XDA13010303);The Youth Innovation Promotion Association CAS “Evolution mechanism and management of seawater intrusion in estuarine plain”(2012040)

滨海地区水文条件复杂,地表水—地下水—海水三者间相互影响关联紧密,人类活动和气候变化导致的一系列影响在这一地区也更加显著。了解滨海地区地表水—地下水方向的重点知识及研究现状,是后续研究的重要前提。基于CiteSpace软件对Web of Science核心数据库中该领域相关文献进行分析,有利于系统梳理该领域内的研究成果,挖掘潜在研究热点。分析结果显示: 该研究领域内的高被引文章及高突发性文章自2010年后显著增多,目前该领域仍处于发展阶段,具有广阔的研究前景。 美国、澳大利亚、中国、德国等国针对该问题进行的研究较多。中国国家自然科学基金委员会支持的该领域研究成果数量处于世界领先地位。 海水入侵、海底地下水排泄(SGD)、潮汐及含水层中水动力条件间关系是该领域的主要研究方向。水化学及同位素分析、数值模拟是该领域的重要研究方法。 海底地下水排泄、滨海红树林湿地的演化、营养盐的迁移转化、滨海地区复杂的水动力条件变化及诱因、气候变化对滨海地区的影响以及新的同位素示踪技术的发展是该领域内潜在的研究方向和突破点。综合来看,未来滨海地区地表水—地下水相关研究的发展离不开各学科间的交叉融合、多方法的相互印证和新技术手段的引入。

The interactions among surface water, groundwater and seawater are closely related in the coastal area with complex hydrological conditions. A series of impacts from human activities and climate change are also more significant in this region. In order to understand the key knowledge and research status of surface water and groundwater interaction in coastal area, it is a useful method to analyze literatures in this research scope in the core database of Web of Science by using CiteSpace. The research achievements in this field were systematically sorted and potential research hotspots were explored, which may provide references for subsequent researches. The results show the following. The number of highly cited articles and highly burst articles in this research field has increased significantly since 2010. At present, this field is still in the development stage and has a broad research prospect. The United States, Australia, China and Germany have done plenty of researches on this issue and achieved a lot. At present, the number of research achievements supported by National Natural Science Foundation of China is in the lead over the world. Seawater intrusion, submarine groundwater discharge, the relationship between tide and hydrological conditions are the main research direction in this field. Hydrochemistry and isotopic analysis, and numerical simulation are the most important research methods in this field. The potential development directions and breakthroughs in this field include submarine groundwater discharge, the evolution of coastal mangrove wetlands, the migration and transformation of nutrients, the influences of different hydrological factors on coastal areas, and the impact of climate change on coastal areas. Overall, the future development of surface water and groundwater research in coastal areas is inseparable from the cross-integration of various disciplines, mutual verification of multiple methods and the introduction of new technical means.

中图分类号: 

图1 19822019年滨海地区地表水地下水相互作用文献被引数与发文量
Fig.1 The number of cited and published papers on coastal groundwater and surface water interaction from 1982 to 2019
图2 各相关学科领域文章数量及占比
Fig.2 The number and proportion of articles in related disciplines
表1 发文量前 10的国家
Table 1 Top ten countries of the number of published papers
图3 国家及地区间文章量及合作关系图谱
节点大小代表国家和地区的发文量,节点间连线代表国家间的合作
Fig.3 Map of published papers and cooperation between countries and regions
The node size represents the countries’ published volume, and the connection line between nodes indicate cooperation
表2 Web of Science 数据库滨海地区地表水—地下水相互作用文献共被引分析表
Table 2 Co-citation analysis of coastal groundwater and surface water interaction in Web of Science dataset
图4 Web of Science数据库滨海地区地表水—地下水相互作用文献共被引分析图谱
节点大小代表文献共被引频次,黑色字为高共被引文献作者及发表年份,红色字体为共被引网络的聚类标签
Fig. 4 Literature co-citation analysis map of coastal groundwater and surface water interaction in WoS dataset
The node size represents the co-citation frequency, the author and publication year of high co-citation literature are marked in black, and the red character is the clustering label of the co-citation network
图5 核心文献共被引演进图谱
节点大小为共被引频次,黑色字标注了高共被引文献的作者及文献的发表年份,上下边界数字为各时间切片中间年份
Fig.5 Co-citation evolution map of core literature
The node size is the co-citation frequency, the author and publication year of the literature with high co-citation are marked in black, and the numbers at boundary are the middle years of each time slice
表3 高突现性关键词表
Table 3 Top burst value keywords
图6 关键词共现时间线图
节点大小代表关键词的共现频率,红色字为聚类标签,水平线长代表该类关键词的持续时间,顶部数字为各时间切片的末尾年份
Fig.6 The time-line view of keywords and noun-phases
The node size represents the co-occurrence frequency of keywords, the red character is the clustering label, the length of horizontal line represents the duration of each clusters, and the top number is the end year of each time slice
表4 关键词聚类
Table 4 Cluster of keywords
聚类编号 聚类内节点数 平均年份 聚类标签
0 94 2009年 groundwater quality; salinization; coastal aquifers; water; hydrochemical processes; health risk assessment; space-time data analysis; Florida; seawater intrusion; ion exchange | groundwater; strontium isotopes; geochemical processes; coastal aquifer; health risk assessment; space-time data analysis
1 73 2003年 hydraulic conductivity; seepage meter; karstic system; recession coefficient; climate change; water table; ground water; riparian waters; reactive nitrogen | denitrification; contamination; Aureococcus anophagefferens; seawater intrusion; sensitivity analysis; riparian waters; evapotranspiration; local recharge; anthropogenic changes
2 64 2007年 submarine groundwater; permeable sediments; coastal hydrology; tidal estuary; groundwater-surface water interaction; water resources management; Atchafalaya river; Mississippi; delayed coincidence counter; east china sea | groundwater; surface water; New Zealand; environmental effects; assessment; coastal groundwater
3 45 2005年 surface water; coastal aquifers; basin management; numerical models; pumping test; groundwater-surface water interaction; surface water-groundwater interactions; Northern Chile; acid-base chemistry |Virginia; coastal plain; acid-base chemistry; sulfate deposition; acidification
4 44 2008年 Florida; Loxahatchee River; national park; saltwater intrusion; time series; common trend; agricultural area; everglades; space-time data analysis; Choshui River | stable isotopes; surface-water relations; coastal aquifers; geophysical methods; space-time data analysis; agricultural practices
5 43 2005年 coastal aquifer; groundwater wave; capillarity; infiltration exfiltration; fluctuation; wave; tidal beaches; macro; sediment transport; arctic wetlands | persistence; water table fluctuation; prince william sound; steady state
6 38 2009年 surface water; saltwater intrusion; groundwater; pressure sensors; groundwater flows; distribution; integrated modelling; circulation; interactions; groundwater table | coastal wetland; seepage face; groundwater interaction; groundwater modelling; integrated modelling; Laizhou Bay
7 34 2007年 base flow; streamflow partitioning; ecosystem service; aquatic ecosystem; end-member mixing analysis; base-flow contaminant flux; groundwater surface water interactions; groundwater interactions | hyporheic zone; surface water-groundwater interaction; artificial drain; coastal plain; ecosystem service; aquatic ecosystem
1 De Graaf I E M, Gleeson T, Van Beek L P H, et al. Environmental flow limits to global groundwater pumping [J]. Nature, 2019, 574 (7 776): 90-94.
2 Tang Q H. Global change hydrology: Terrestrial water cycle and global change [J]. Science China-Earth Sciences,2019, 62 (1): 1-4.
3 Rodell M, Velicogna I, Famiglietti J S. Satellite-based estimates of groundwater depletion in India [J]. Nature, 2009, 460 (7 258): 999-1 002.
4 Aeschbach-Hertig W, Gleeson T. Regional strategies for the accelerating global problem of groundwater depletion [J]. Nature Geoscience, 2012, 5 (12): 853-861.
5 Xia Jun. Nonlinear System Theory and Method of Hydrology [M]. Wuhan:Wuhan University Press, 2002.
夏军. 水文非线性系统理论与方法 [M]. 武汉:武汉大学出版社, 2002.
6 Bloschl G, Bierkens M F P, Chambel A, et al. Twenty-three Unsolved Problems in Hydrology (UPH)—A community perspective [J]. Hydrological Sciences, 2019, 64 (10): 1 141-1 158.
7 Ferguson G, Gleeson T. Vulnerability of coastal aquifers to groundwater use and climate change [J]. Nature Climate Change, 2012, 2(5): 342-345.
8 Xue Yuqun, Wu Jichun, Xie Chunhong, et al. Study on seawater intrusion and saltwater intrusion in Laizhou Bay[J]. Chinese Science Bulletin, 1997, 42(22): 2 360-2 368.
薛禹群,吴吉春,谢春红,等. 莱州湾沿岸海水入侵与咸水入侵研究[J]. 科学通报, 1997, 42(22): 2 360-2 368.
9 Shi Minqi. Spatial Distribution of Population in the Low Elevation Coastal Zone and Assessment on Vulnerability of Natural Disaster in the Coastal Area of Chinam [D]. Shanghai:Shanghai Normal University, 2012.
施敏琦. 中国沿海低地人口分布及人群自然灾害脆弱性研究 [D].上海:上海师范大学, 2012.
10 Zhu Gaoru, Xu Xuegong. Research review on environment effects of land reclamation from sea [J]. Ecology and Environment Sciences, 2011, 20(4): 761-766.
朱高儒,许学工. 填海造陆的环境效应研究进展[J]. 生态环境学报, 2011, 20(4): 761-766.
11 Sengupta D, Chen R, Meadows M E. Building beyond land: An overview of coastal land reclamation in 16 global megacities[J]. Applied Geography, 2018, 90: 229-238.
12 Zhao Gengmao, Liu Zhaopu, Zhang Bo, et al. Studies on utilization of saline aquaculture water and measures to reduce evaporation and salt accumulation in sub-arid coastal zones [J]. Soils, 2010, 42(2): 292-296.
赵耕毛,刘兆普,张博,等.滨海盐渍区海水养殖废水利用与减蒸抑盐措施研究[J]. 土壤, 2010, 42(2): 292-296.
13 Li H, Li X, Li Q, et al. Environmental response to long-term mariculture activities in the Weihai coastal area, China [J]. Science of the Total Environment, 2017, 601/602: 22-31.
14 Liu Hanlin, Nie Hongtao, Wang Yali, et al. Estimation method of pollutant load into sea using statistical data—Tianjin City[J]. Marine Environmental Science, 2019, 38(6): 968-976.
刘汉霖,聂红涛,王雅丽,等. 基于统计数据的滨海地区污染物入海通量计算方法研究与应用——以天津市为例[J]. 海洋环境科学, 2019, 38(6): 968-976.
15 Chen Jiyu, Chen Shenliang. Challenges for China's estuarine coast [J]. Marine Geology Letters, 2002, 18(1):1-5.
陈吉余, 陈沈良. 中国河口海岸面临的挑战[J]. 海洋地质前沿, 2002, 18(1):1-5.
16 Wen Jiahong, Yuan Suiping, Li Dali, et al. Sea level rise and its risk management [J]. Advances in Earth Science, 2018, 33(4): 350-360.
温家洪,袁穗萍,李大力,等. 海平面上升及其风险管理[J]. 地球科学进展, 2018, 33(4): 350-360.
17 Ketabchi H, Mahmoodzadeh D, Ataie-Ashtiani B, et al. Sea-level rise impacts on seawater intrusion in coastal aquifers: Review and integration [J]. Journal of Hydrology, 2016, 535: 235-255.
18 Chen Guangquan. Mechanisms Underlying of Seawater Intrusion and Evaluation of Early Warning Systems in the Laizhou Bay Area[D]. Shanghai:East China Normal University, 2013.
陈广泉. 莱州湾地区海水入侵的影响机制及预警评价研究[D]. 上海:华东师范大学, 2013.
19 Kopsiaftis G, Tigkas D, Christelis V, et al. Assessment of drought impacts on semi-arid coastal aquifers of the Mediterranean [J]. Journal of Arid Environments, 2017, 137: 7-15.
20 Shi Xianwu, Tan Jun, Guo Zhixing, et al. A review of risk assessment of storm surge disaster[J]. Advances in Earth Science, 2013, 28(8): 866-874.
石先武,谭骏,国志兴,等.风暴潮灾害风险评估研究综[J]. 地球科学进展, 2013, 28(8): 866-874.
21 Karim M F, Mimura N. Impacts of climate change and sea-level rise on cyclonic storm surge floods in Bangladesh [J]. Global Environmental Change, 2008, 18(3): 490-500.
22 Leydesdorff L, Bihui J. Mapping the Chinese science citation database [J]. Proceeding of the American Society for Information Science & Technology, 2004, 41(1): 488-495.
23 Garfield E. From the science of science to scientometrics visualizing the history of science with HistCite software [J]. Journal of Informetrics, 2009, 3(3): 173-179.
24 Wei Feili, Li Shuangcheng, Yu Wusheng, et al. History and present situation of precipitation stable isotope research—Based on bibliometrics and network analysis [J]. Acta Ecologica Sinica, 2019, 39(7): 2 634-2 643.
韦飞黎, 李双成, 余武生, 等. 降水稳定同位素研究的历史与现状——基于文献计量学及网络分析方法 [J]. 生态学报, 2019, 39(7): 2 634-2 643.
25 Ding Lubin, He Siyuan, Min Qingwen. Metrological and visual analysis of meta-analysis related literature in ecology by CiteSpace application [J]. Acta Ecologica Sinica, 2019, 39(24): 1-9.
丁陆彬, 何思源, 闵庆文. CiteSpace应用对生态学科meta分析相关文献的计量学和可视化分析 [J]. 生态学报, 2019, 39(24): 1-9.
26 Liu Zhongqing, Li Mengsha, Yang Libin, et al. Development and tendency of soil fungi based on Web of Science[J]. Environmental Science & Technology, 2019, 42(Suppl.1):57-64.
刘中庆, 李梦莎, 杨立宾, 等. 基于Web of Science的土壤真菌发展研究 [J]. 环境科学与技术, 2019, 42(增刊1): 57-64.
27 Zhang Cancan, Sun Caizhi. A CiteSpace-based bibliometric analysis of water footprint [J]. Acta Ecologica Sinica, 2018, 38(11): 4 064-4 076.
张灿灿, 孙才志. 基于CiteSpace的水足迹文献计量分析 [J]. 生态学报, 2018, 38(11): 4 064-4 076.
28 Zhang Zengke, Wang Qi, Wu Yahua, et al. Research progress and development of plant functional traits based on CiteSpace [J]. Acta Ecplogica Sinica, 2020, 40(3): 1-13.
张增可, 王齐, 吴雅华, 等. 基于CiteSpace植物功能性状的研究进展及发展动态 [J]. 生态学报, 2020, 40(3): 1-13.
29 Qin Xiaonan, Lu Xiaoli, Wu Chunyou. The knowledge mapping of domestic ecological security research: Bibliometric analysis based on CiteSpace [J]. Acta Ecplogica Sinica, 2014, 34(13): 3 693-3 703.
秦晓楠, 卢小丽, 武春友. 国内生态安全研究的知识图谱——基于Citespace的计量分析 [J]. 生态学报, 2014, 34(13): 3 693-3 703.
30 Hu Xiufang, Zhao Jun, Zha Shuping, et al. An analysis of the evolution of topics and future trends in ecological security research [J]. Acta Ecplogica Sinica, 2015, 35(21): 6 934-6 946.
胡秀芳, 赵军, 查书平, 等. 生态安全研究的主题漂移与趋势分析 [J]. 生态学报, 2015, 35(21): 6 934-6 946.
31 Zhang Chenjia, Fang Yiping, Chen Xiujuan. Bibliometric analysis of sustainable livelihoods research in China[J]. Advances in Earth Science, 2018, 33(9): 969-982.
张宸嘉, 方一平, 陈秀娟. 基于文献计量的国内可持续生计研究进展分析[J]. 地球科学进展, 2018, 33(9): 969-982.
32 Chen C M. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature [J]. Journal of the American Society for Information Science and Technology, 2006, 57(3): 359-377.
33 Chen C M. Searching for intellectual turning points: Progressive knowledge domain visualization[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(Suppl.1): 5 303-5 310.
34 Chen Yue, Chen Chaomei, Liu Zeyuan, et al. The methodology function of CiteSpace mapping knowledge domains [J]. Studies in Science of Science, 2015, 33(2): 242-253.
陈悦,陈超美,刘则渊,等. CiteSpace知识图谱的方法论功能 [J]. 科学学研究, 2015, 33(2): 242-253.
35 Chen C, Ibekwe-Sanjuan F, Hou J. The structure and dynamics of co-citation clusters: A multiple-perspective co-citation analysis[J]. Journal of the American Society for Information Science and Technology, 2010, 61(7): 1 386-1 409.
36 Hu Litang, Wang Zhongjing, Zhao Jianshi, et al. Advances in the interactions and integrated model between surface water and groundwater [J]. Journal of Hydraulic Engineering, 2007, 38(1): 54-59.
胡立堂, 王忠静, 赵建世, 等. 地表水和地下水相互作用及集成模型研究 [J]. 水利学报, 2007, 38(1): 54-59.
37 Xiong Guiyao, Fu Tengfei, Xu Xingyong, et al. Review of factors affecting seawater intrusion in coastal aquifers [J]. Marine Science, 2019, 43(6): 1-11.
熊贵耀, 付腾飞, 徐兴永, 等. 滨海含水层海水入侵影响因素研究综述 [J]. 海洋科学, 2019, 43(6): 1-11.
38 Li Hailong, Wang Xuejing. Submarine groundwater discharge: A review [J]. Advances in Earth Science, 2015, 30(6): 636-646.
李海龙, 王学静. 海底地下水排泄研究回顾与进展 [J]. 地球科学进展, 2015, 30(6): 636-646.
39 Fanning K A, Breland J A, Byrne R H. RA-226 and RN-222 in the coastal waters of west Florida-high concentration and atmospheric degassing [J]. Science, 1982, 215(4 533): 667-670.
40 Fenn M E, Poth M A, Aber J D, et al. Nitrogen excess in North American ecosystems: Predisposing factors, ecosystem responses, and management strategies [J]. Ecological Applications, 1998, 8(3): 706-733.
41 Heaton T H E. Isotopic studies of nitrogen pollution in the hydrosphere and atmosphere—A review [J]. Chemical Geology, 1986, 59(1): 87-102.
42 Hill A R. Nitrate removal in stream riparian zones [J]. Journal of Environmental Quality, 1996, 25(4): 743-755.
43 Su N, Liu F, Anh V. Tides as phase-modulated waves inducing periodic groundwater flow in coastal aquifers overlaying a sloping impervious base [J]. Environmental Modelling & Software, 2003, 18 (10): 937-942.
44 Jiao J J, Li H. Breathing of coastal vadose zone induced by sea level fluctuations [J]. Geophysical Research Letters, 2004, 31(11): L11502.
45 Moore W S. The effect of submarine groundwater discharge on the ocean [J]. Annual Review of Marine Science, 2010, 2:59-88.
46 Werner A D, Bakker M, Post V E A, et al. Seawater intrusion processes, investigation and management: Recent advances and future challenges [J]. Advances in Water Resources, 2013, 51: 3-26.
47 Santos I R, Eyre B D, Huettel M. The driving forces of porewater and groundwater flow in permeable coastal sediments: A review [J]. Estuarine Coastal and Shelf Science, 2012, 98: 1-15.
48 Burnett W C, Aggarwal P K, Aureli A, et al. Quantifying submarine groundwater discharge in the coastal zone via multiple methods [J]. Science of the Total Environment, 2006, 367 (2/3): 498-543.
49 Essink G, Van Baaren E S, De Louw P G B. Effects of climate change on coastal groundwater systems: A modeling study in the Netherlands [J]. Water Resources Research, 2010, 46: 16.
50 Robinson C, Li L, Barry D A. Effect of tidal forcing on a subterranean estuary [J]. Advances in Water Resources, 2007, 30 (4): 851-865.
51 Han D M, Song X F, Currell M J, et al. Chemical and isotopic constraints on evolution of groundwater salinization in the coastal plain aquifer of Laizhou Bay, China [J]. Journal of Hydrology, 2014, 508: 12-27.
52 El Yaouti F, El Mandour A, Khattach D, et al. Salinization processes in the unconfined aquifer of Bou-Areg (NE Morocco): A geostatistical, geochemical, and tomographic study [J]. Applied Geochemistry, 2009, 24(1): 16-31.
53 Xin P, Robinson C, Li L, et al. Effects of wave forcing on a subterranean estuary [J]. Water Resources Research, 2010, 46: 17.
54 Li Jie, Chen Chaomei. Citespace: Text Mining and Visualization in Scientific Literature [M]. Beijing:Captial University of Economic and Business Press, 2016.
李杰, 陈超美. CiteSpace:科技文本挖掘及可视化 [M]. 北京:首都经济贸易大学出版社, 2016.
55 Berger U, Rivera-Monroy V H, Doyle T W, et al. Advances and limitations of individual-based models to analyze and predict dynamics of mangrove forests: A review [J]. Aquatic Botany, 2008, 89(2): 260-274.
56 Guler C, Kurt M A, Alpaslan M, et al. Assessment of the impact of anthropogenic activities on the groundwater hydrology and chemistry in Tarsus coastal plain (Mersin, SE Turkey) using fuzzy clustering, multivariate statistics and GIS techniques [J]. Journal of Hydrology, 2012, 414: 435-451.
57 Hinsby K, De Melo M T C, Dahl M. European case studies supporting the derivation of natural background levels and groundwater threshold values for the protection of dependent ecosystems and human health [J]. Science of the Total Environment, 2008, 401(1/3): 1-20.
58 Garrett C G, Vulava V M, Callahan T J, et al. Groundwater-surface water interactions in a lowland watershed: Source contribution to stream flow [J]. Hydrological Processes, 2012, 26(21): 3 195-3 206.
59 Kloppmann W, Negrel P, Casanova J, et al. Halite dissolution derived brines in the vicinity of a Permian salt dome (N German Basin). Evidence from boron, strontium, oxygen, and hydrogen isotopes [J]. Geochimica et Cosmochimica Acta, 2001, 65(22): 4 087-4 101.
60 Yu H L, Chu H J. Understanding space-time patterns of groundwater system by empirical orthogonal functions: A case study in the Choshui River alluvial fan, Taiwan [J]. Journal of Hydrology, 2010, 381 (3/4): 239-247.
61 Carabin G, Dassargues A. Modeling groundwater with ocean and river interaction [J]. Water Resources Research, 1999, 35(8): 2 347-2 358.
[1] 房婷婷, 付广裕. 卫星重力与地球重力场的文献计量分析[J]. 地球科学进展, 2021, 36(5): 543-552.
[2] 吴佳梅,彭秋志,黄义忠,黄亮. 中国植被覆盖变化研究遥感数据源及研究区域时空热度分析[J]. 地球科学进展, 2020, 35(9): 978-989.
[3] 艾鑫,马明国,王雪梅,匡鸿海. 全球地球科学研究的可视化分析[J]. 地球科学进展, 2020, 35(12): 1270-1280.
[4] 刘小茜,裴韬,舒华,高锡章. 基于文献计量学的社会—生态系统恢复力研究进展[J]. 地球科学进展, 2019, 34(7): 765-777.
[5] 王雪梅,尉永平,马明国,张志强. 基于文献计量学的黑河流域研究进展分析[J]. 地球科学进展, 2019, 34(3): 316-323.
[6] 高春东,吴秀平. 基于文献计量的水治理研究国际发展态势分析[J]. 地球科学进展, 2019, 34(3): 324-332.
[7] 张宸嘉, 方一平, 陈秀娟. 基于文献计量的国内可持续生计研究进展分析[J]. 地球科学进展, 2018, 33(9): 969-982.
[8] 王金平, 曲建升, 马金珠. 基于文献计量的国际虚拟水研究发展态势分析[J]. 地球科学进展, 2018, 33(6): 653-663.
[9] 马学成, 巩杰, 柳冬青, 张金茜. 社会生态系统研究态势:文献计量分析视角[J]. 地球科学进展, 2018, 33(4): 435-444.
[10] 何尹杰, 吴大放, 刘艳艳. 城市轨道交通对土地利用的影响研究综述——基于Citespace的计量分析 *[J]. 地球科学进展, 2018, 33(12): 1259-1271.
[11] 曲建升, 肖仙桃, 曾静静. 国际气候变化科学百年研究态势分析 *[J]. 地球科学进展, 2018, 33(11): 1193-1202.
[12] 宋世雄, 刘志锋, 何春阳, 赵瑞, 任强. 城市扩展过程对自然生境影响评价的研究进展[J]. 地球科学进展, 2018, 33(10): 1094-1104.
[13] 李强. 基于文献计量学分析2016年度岩溶学研究热点[J]. 地球科学进展, 2017, 32(5): 535-545.
[14] 王婷. 基于文献计量的青藏高原国际合作研究态势分析[J]. 地球科学进展, 2016, 31(6): 650-662.
[15] 於维樱, 冯志纲, 王琳. 加拿大海洋学研究态势与最新进展分析[J]. 地球科学进展, 2016, 31(5): 542-552.
阅读次数
全文


摘要