[1]Brock T D, Madigan M T, Martinko J M,et al. Biology of Microorganisms[M]. New Jersey: Prentice Hall, 1994. [2]Altermann W. The evolution of life and its impact on sedimentation[C]∥Altermann W, Corcoran P L. Precambrian Sedimentary Environments: A Modern Approach to Ancient Depositional Systems. Oxford: Blackwell Science, IAS Special Publication 33, 2002:15-32. [3]Krumbein W E. The year of the slime[M]∥Krumbein W E, Paterson D M, Stal L J. Biostabilization of Sediments. Oldenburg:(BIS) Verlag, 1994:1-7. [4]Darwin C. Journal of the Researches into the Geology and Natural History of the Various Countries Visited by HMS Beagle, vol. 1 (reprint 1958)[M]. New York: Appleton and Company, 1839. [5]Kalkowsky E. Oolith and stromatolith in norddeutschen Bundsandstein[J].Zeitschrift der Deutschen Geologischen Gesellschaft,1908, 60: 68-125. [6]Black M. The algal sediments of Andros Islands, Bahamas[J].Philosophical Transactions of the Royal Society,1933, Series B: 165-192. [7]Cloud P E. Notes on stromatolites[J].American Journal of Sciences,1942, 240: 363-379. [8]Krumbein W E.Cyanobakterien-Bakterien Oder Algen?[M].Oldenburg: Oldenburger Symposium Fiber Cyanobakterien, 1979. [9]Krumbein W E. Stromatolites the challenge of a term in space and time[J].Precambrian Research,1983, 20: 493-531. [10]Rippka R, Deruelles J, Waterbury J B,et al. Generic assignments, strain histories and properties of pure cultures of cyanonacieria[J].Journal of General Microbioogy,1979, 111: 1-61. [11]Margulis L, Dolan M F. Early Life: Evolution on the Precambrian Earth[M]. Sudbury: Jones and Bartlett, 2002. [12]Lovelock J E. The Ages of Gaia[M]. New York: W.W. Norton, 1988. [13]Logan B W, Hoffman P, Gebelein C D. Evolution and diagenesis of Quaternary Carbonate Sequence, Shark Bay, West Australia[J].AAPG,1974, 22: 140-194. [14]Logan B W, Rezak R, Ginsburg R N. Classification and environmental significance of algal stromatolites[J].Journal of Geology,1964, 72: 68-83. [15]Riding R. Microbial carbonates: The geological record of calcified bacterialalgal mats and biofilms[J].Sedimentology,2000, 47: 179-214. [16]Reid R P, Visscher P T, Decho A W,et al. The role of microbes in accretion, lamination and early lithification of modern marine stromatolites[J].Nature,2000, 406: 989-992. [17]Vasconcelos C, Warthmann R, McKenzie J A,et al. Lithifying microbial mats in Lagoa Vermelha, Brazil: Modern Precambrian relics?[J].Sedimentary Geology,2006, 185: 175-183. [18]Dupraz C, Reid R P, Braissant O,et al. Processes of carbonate precipitation in modern microbial mats[J].Earth Science Reviews,2009, 96: 141-162. [19]Altermann W, Kazmierczak J, Oren A,et al. Microbial calcification and its impact on the sedimentary rock record during 3.5 billion years of Earth history[J].Geobiology,2006, 4: 147-166. [20]Davis R A. Algal stromatolites composed of quartz sandstone[J].Journal of Sedimentory Petrology,1968, 38: 953-955. [21]Schieber J. The possible role of benthic microbial mats during the formation of carbonaceous shales inerozoic basins[J].Sedimentology,1986, 33: 521-536. [22]Füchtbauer H. Sedimente and Sedimentgesteine[M]. Stuttgart: Schweizerbart, 1988. [23]Blatt H. Sedimentary Petrology[M]. New York: W.H. Freeman, 1992. [24]Boggs S. Principles of Sedimentology and Stratigraphy[M]. Upper Saddle River: Prentice Hall, 1995. [25]Reading H G. Sedimentary Environments: Processes, Facies and Stratigraphy[M]. Oxford: Blackwell Science, 1996. [26]Boggs S. Petrology of Sedimentary Rocks[M]. Cambridge: Cambridge University Press, 2009. [27]Tucker M E. Sedimentary Petrology[M]. Oxofrd: Blackwell Science, 2001. [28]Nichols G. Sedimentology and Stratigraphy[M]. Oxford: Wiley-Blackwell, 2009. [29]Pettijohn F J. Sedimentary Rocks[M]. New York: Harper, 1957. [30]Hagadorn J W, Pfiüger F, Bottjer D J. Unexplored microbial worlds[J].Palaios,1999,14: 1-2. [31]Riding R E, Awramik S M. Microbial Sediments[M]. Berlin: Springer-Verlag, 2000. [32]Schieber J. Microbial mats in terrigenous clastics: The challenge of identification in the rock records[J].Palaios,1999, 14: 3-12. [33]Seilacher A, Pflüger F. From biomats to benthic agriculture: A biohistoric revolution[C]∥Krumbein W E, Paterson D M, Stal L J. Biostabilization of Sediments. Oldenberg: Bibliotheks und Informationssystem der Carl von Ossietzky Universität Oldenberg, 1994:97-105. [34]Pflüger F. Matground structures and redox facies[J].Palaios,1999, 14: 25-39. [35]Noffke N, Gerdes G, Klenke T,et al. Microbially induced sedimentary structures—A new category within the classification of primary sedimentary structures[J].Journal of Sedimentary Research,2001,71: 649-656. [36]Mei Mingxiang, Gao Jinhan, Meng Qingfen. From the matground structure to the primary sedimentary structure of a fifth category: Significant concepts on sedimentology [J].Geosciences,2006, 20(3): 413-422.[梅冥相, 高金汉, 孟庆芬. 从席底构造到第五类原生沉积构造:沉积学中较为重要的概念[J]. 现代地质, 2006, 20(3): 413-422.] [37]Schieber J. Microbial mats in the siliclastic rock record: A summary of diagnostic features[C]∥Errickson P G, Alterman W, Nelson D R, et al. The Precambrian Earth: Tempos and Events. Amsterdam: Elsevier, 2004:663-673. [38]Madigan M T, Martinko J M. Brock Biology of Microorganisms[M]. Upper Saddle River: Prentice Hall, 2006. [39]Schieber J, Bose P K, Eriksson P G,et al. Atlas of Microbial Mat Features Preserved within the Siliclastic Rock Record[M]. Amsterdam: Elsevier, 2007. [40]Grotzinger J P, Knoll A H. Stromatolites in Precambrian carbonates: Evolutionary mileposts or environmental dipsticks?[J].Annual Review of Earth and Planetary Sciences,1999, 27: 313-358. [41]Riding R, Liang L. Geobiology of microbial carbonates: Metazoan and seawater saturation state influences on secular trends during the Phanerozoic[J].Palaeogeography, Palaeoclimatology, Palaeoecology,2005, 219: 101-115. [42]Dupraz C, Pattisina R, Verrecchia E P. Translation of energy into morphology: Simulation of stromatolite morphospace using a stochastic model[J].Sedimentary Geology,2006, 185: 185-203. [43]Grotzinger J P, Rothman D H. An abiotic model for stromatolite morphogenesis[J].Nature,1996, 383: 423-425. [44]Semikhatov M A, Raaben M E. Proterozoic stromatolite taxonomy and biostratigraphy[C]∥Ridding R, Awramik S M. Microbial Sediments. Heideberg: SpringerVerlag, 2000:295-306. [45]Cao Ruiji, Yuan Xunlai. Stromatolites[M].Hefei: University of Technology and Science Press,2006.[曹瑞骥, 袁训来.叠层石[M].合肥: 中国科学技术大学出版社, 2006.] [46]Decho A W, Visscher P T, Reid R P. Production and cycling of natural microbial exopolymers (EPS) within a marine stromatolite[J].Palaeogeography, Palaeoclimatology, Palaeoecology,2005, 219: 71-86. [47]Dupraz C, Visscher P T, Baumgartner L K,et al. Microbe mineral interactions: Early CaCO3 precipitation in a recent hypersaline lake (Eleuthera Islands, Bahamas) [J].Sedimentology,2004, 51: 745-765. [48]Dupraz C, Visscher P T. Microbial lithification in marine stromatolites and hypersaline mats[J].Trends in Microbiology, 2005, 13:429-438. [49]Mann C J, Nelson W M. Microbialitic structures in Storr's Lake, San Salvador Island, Bahamas Islands[J].Palaios,1989, 4: 287-293. [50]Baumgartner L K, Reid R P, Dupraz C,et al. Sulfate reducing bacteria in microbial mats: Changing paradigms, new discoveries[J].Sedimentary Geology,2006, 185: 131-145. [51]Papineau D,Walker J, Mojzsis S J, et al. Composition and structure of microbial communities from stromatolites of Hamelin Pool in Shark Bay, Western Australia[J].Applied and Environmental Microbiology,2005,71:4 822-4 832. [52]Ley R E, Harris J K, Wilcox J, et al. Unexpected diversity and complexity of the Guerrero Negro hypersaline microbial mat[J].Applied and Environmental Microbiology, 2006, 72: 3 685-3 695. [53]Visscher P T, Stolz J F. Microbial mats as bioreactors: Populations, processes and products[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 219:87-100. [54]Kah L C, Knoll A H. Microbenthic distribution of Proterozoic tidal flats: Environmental and taphonomic considerations[J].Geology,1996, 24: 79-82. [55]Grotzinger J P, James N P. Precambrian carbonates: Evolution of understanding[C]∥Grotzinger J P, James N P. Carbonate Sedimentation and Diagenesis in the Evolving Precambrian World. SEPM Special Publication, 67, 2000: 3-22. [56]Mei Mingxiang, Gao Jinhan, Meng Qinfen, et al. Sedimentary features and their implications of microdigital stromatolites from the Mesoproterozoic Wumishan Formation at the Jixian section in North China[J].Acta Geologica Sinica (English Edition),2010, 84: 483-496. [57]Pope M C, Grotzinger J P, Schreiber B C. Evaporitic subtidal stromatolites produced by in situ precipitation: Textures, facies associations, and temporal significance[J].Journal of Sedimentary Research,2000, 70: 1 139-1 151. [58]Riding R. Microbial carbonate abundance compared with fluctuations in metazoan diversity over geological time[J].Sedimentary Geology,2006, 185: 229-238. [59]Schubert J K, Bottjer D J. Aftermath of the Permian Triassic mass extinction event: Paleoecology of Lower Triassic carbonates in the western USA[J].Palaeogeography, Palaeoclimatology, Palaeoecology,1995, 116: 1-39. [60]Wang Yongbiao, Tong Jinnan, Wang Jiasheng, et al. Calcimicrobialite after endPermian mass extinction in South China and its paleoenvironmental significanc[J].Chinese Science Bulletin, 2005, 50(6): 552-558.[王永标, 童金南, 王家生, 等. 华南二叠纪末大灭绝后的钙质微生物岩及古环境意义[J]. 科学通报, 2005, 50 (6): 552-558.][61]Gerdes G, DunajtschikPiewak K, Riege H, et al. Structural diversity of biogenic carbonate particles in microbial mats[J]. Sedimentology,1994, 41: 1 273-1 294. [62]Brehm U, Krumbein W E, Palinska K A. Biomicrospheres generate ooids in laboratory[J]. Geomicrobiology Journal,2006, 23: 545-550. [63]Tucker M E, Wright V P. Carbonate Sedimentology[M].Oxford: Blackwell Sciences, 1990. [64]Lowe D R. Abiological origin of described stromatolites older than 3.2 Ga[J].Geology,1994, 22: 387-390. [65]Hofmann H J, Grey A H, Hickman A H,et al. Origin of 3.45 Ga coniform stromatolites in Warrawoona Group, Western Australia[J].Geological Society of America Bulletin, 1999, 111:1 256-1 262. [66]Allwood A C, Walter M R, Kamber B S, et al. Stromatolite reef from the Early Archaean era of Australia[J].Nature, 2006, 441: 714-718. [67]Allwood A C, Walter M R, Burch I W, et al. 3.43 billionyearold stromatolite reef from the Pilbara Craton of Western Australia: Ecosystem-scale insights to early life on Earth[J].Precambrian Research,2007, 158: 198-227. [68]Schopf J W. Fossil evidence of Archean life[J].Philosophical Transactions of the Royal Society,2006, 361(1 470): 869-885. [69]Awramik S M, Sprinkle J. Proterozoic stromatolites: The first marine evolutionary biota[J].Historical Biology,1999, 13: 241-253. [70]Kah L C, Riding R. Mesoproterozoic carbon dioxide levels inferred from calcified cyanobacteria[J]. Geology,2007,35: 799-802. [71]Hofmann H J. Precambrian fossils, pseudofossils and problematica in Canada[J]. Bulletin of Geological Survey of Canada,1971,189: 146-147. [72]Gao Jianhua, Cai Keqin, Yang Shipu, et al. The observation of the oldest trace fossils in the Changchengian System[J]. Chinese Scientific Bulltetin,1993, 38(20): 1 891-1 895.[高建华, 蔡克勤, 杨式溥,等. 蓟县长城系中发现最古老的遗迹化石[J]. 科学通报, 1993, 38(20): 1 891-1 895.] [73]Yang Shipu, Zhang Jianping, Yang Meifang. Trace Fossils of China [M]. Beijing: Science Press, 2004.[杨式溥, 张建平, 杨美芳. 中国遗迹化石[M]. 北京: 科学出版社,2004.] [74]Knaust D, Hauschke N. Trace fossils versus pseudofossils in Lower Triassic playa deposits, Germany[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2004, 215: 87-97. [75]Häntzschel W. Trace fossils and problematica[C]∥Teichert C. Treatise on Invertebrate Paleontology, Part W, Supplement 1. Lawrence: Geological Society of America and University of Kansas Press, 1975:269-270. [76]Hagadorn J W, Bottjer D J. Wrinkle structures: Microbially mediated sedimentary structures common in subtidal siliciclastic settings at the Proterozoic Phanerozoic transition[J].Geology,1997, 25: 1 047-1 050. [77]Porada H, Bouougri E H. Wrinkle structures—A critical review[J]. Earth-Science Reviews,2007, 81: 199-215. [78]Mata S A, Bottjer D J. The paleoenvironmental distribution of Phanerozoic wrinkle structures[J]. Earth-Science Reviews,2009, 96: 181-195. [79]Walter M R. Tectonically deformed sand volcanoes in a Precambrian greywacke, Northern Territory of Australia[J].Journal of the Geological Society of Australia,1972, 18: 395-399. [80]Pickerill R K, Harris L M. A reinterpretation of Astropolithon hindii Dawson 1878[J].Journal of Sedimentary Petrology,1979, 49: 1 029-1 036. [81]Seilacher A, Goldring R. Class Psammocorallia (Coelenterata, Vendian-Ordovician): Recognition, systematics, and distribution[J].Geologiska Föreningens Stockholm Förhandlingar,1996, 118: 207-216. [82]Gong Yiming, Zhang Kexin. Basics and Frontiers in Stratigraphy[M]. Wuhan: Press of China University of Geosciences, 2007.[龚一鸣, 张克信. 地层学基础和前沿[M].武汉: 中国地质大学出版社, 2007.] [83]Noffke N. The concept of geobiological studies: The example of bacterially generated structures in physical sedimentary systems[J].Palaios,2002, 17: 1-2. [84]Olszewski T D. Geobiology: A golden opportunity and a call to action[J].Palaios,001, 16: 1-2. [85]Noffke N. Geobiology—A holistic scientific discipline[J].Palaeogeography, Palaeoclimatology, Palaeoecology,2005, 219: 1-3. [86]Knoll A H. The geological consequences of evolution[J].Geobiology,2003, 1: 3-14. [87]Yin Hongfu. Biogeology[J].Advances in Earth Science,1994, 9(6): 79-82.[殷鸿福. 生物地质学[J].地球科学进展,1994, 9(6): 79-82.] [88]Knoll A H, Hayes J M. Geobiology: Articulating a concept[C]∥Lane R H, Lipps J, Steininger F F, et al. Paleontology in the 21st Century: Frankfurt, International Senckenberg Conference. Senckenberg: Kleine Senckenberg, 1997, 25: 105-108. [89]Xie Shucheng, Gong Yiming, Tong Jinnan,et al. The spanning from palaeontology to geobiology[J].Chinese Scientific Bulletin,2006, 51(19): 1 327-1 336.[谢树成, 龚一鸣, 童金南, 等. 从古生物学到地球生物学的跨越[J]. 科学通报,2006, 51(19): 1 327-1 336.] [90]Seilacher A. Biomatrelated lifestyles in the Precambrian[J].Palaios,1999,14: 86-93. [91]Noffke N. Multidirected ripple marks rising from biological and sedimentological processes in modern lower supratidal deposits (Mellum Island, southern North Sea)[J].Geology,1998, 26: 879-882. [92]Pflüger F, Gersse P G. Microbial sand chip—A nonactualistic sedimentary structure[J].Sedimentary Geology,1996, 102: 263-274. [93]Pettijohn F J, Potter P E. Atlas and Glossary of Primary Sedimentary Structure[M].Berlin: SpringerVerlag, 1964. [94]Noffke N. The criteria for the biogeneicity of Microbially Induced Sedimentary Structures (MISS) in Archean and younger, sandy deposits[J].EarthScience Reviews, 2009, 96: 173-180. [95]Gerdes G. Structures left by modern microbial mats in their host sediments[C]∥Schieber J, Bose P K, Eriksson P G, et al. Atlas of Microbial Mat Features Preserved within the Siliclastic Rock Record.Amsterdam: Elsevier, 2007:5-38. [96]Krumbein W E, Paterson D M, Zavarzin G A. Fossil and Recent Biofilms[M]. Dordrecht: Kluwer Academic Publishers, 2003. [97]Gerdes G, Klenke T, Noffke N. Microbial signatures in peritidal siliciclastic sediments: A catalogue[J].Sedimentology,2000, 47: 279-308. [98]Sarkar S, Banerjee S, Eriksson P G. Microbial mat features in sandstones illustrated[C]∥Eriksson P G, Altermann W, Nelson D R, et al. The Precambrian Earth: Tempos and Events. Amsterdam: Elsevier, 2004:673-675. [99]Noffke N, Eriksson K A, Hazen R M, et al. A new window into Early Archean life: Microbial mats in Earth′s oldest siliciclastic deposits (3.2 Ga Moodies Group, South Africa)[J].Geology,2006, 34: 253-256. [100]Squyres S W,Grotzinger J P,Arvidson R E, et al. In situ evidence for an ancient aqueous environment at Meridiani Planum, Mars[J].Science,2004,306:1 709-1 714. [101]Decho A W, Visscher P T, Ferry J, et al. Autoinducers extracted from microbial mats reveal a surprising diversity of N-acylhomoserine Lactones (AHL′s) and abundance changes that may relate to diel pH[J]. Environmental Microbiology,2009, 11: 409-420. |