地球科学进展 ›› 2011, Vol. 26 ›› Issue (6): 586 -597. doi: 10.11867/j.issn.1001-8166.2011.06.0586

综述与评述 上一篇    下一篇

微生物席沉积学:一个年轻的沉积学分支
梅冥相   
  1. 中国地质大学(北京)地球科学与资源学院,北京100083
  • 收稿日期:2010-11-01 修回日期:2011-02-19 出版日期:2011-06-10
  • 通讯作者: 梅冥相 E-mail:meimingxiang@263.net
  • 基金资助:

    国家自然科学基金项目“燕山蓟县系旋回与事件及其相关沉积问题研究”(编号:40472065);中国石油化工股份有限公司海相前瞻性项目“中国北方元古代岩相古地理编图”(编号:C0800-07-ZS-164)资助.

Microbial-mat Sedimentology: A Young  Branch fron Sedimentology

Mei Mingxiang   

  1. School of Earth Science and Natural Resource, China University of Geosciences, Beijing100083, China
  • Received:2010-11-01 Revised:2011-02-19 Online:2011-06-10 Published:2011-06-10

现代实例和岩石记录的研究表明,微生物席是一个特别的微生物群落,这个特殊的微生物群落就像一个复杂的食物网一样,群落中的每一个组成成员紧密相互依赖,从而构成了地球上形成最早、延续时间最长的生态系。微生物席在沉积岩中留下了丰富而且复杂的记录,在碳酸盐岩中最为典型的产物就是叠层石,在碎屑岩中最具有代表性的产物就是“微生物诱发的沉积构造(MISS)”。对这些特殊沉积记录的长期研究和探索,产生了沉积学在地球生物框架下的一个年轻分支——“微生物席沉积学”;这个以微生物席为研究对象的年轻的沉积学分支,在研究地球早期生命演变、探索生物圈对水圈和大气圈的长时间影响,具有重要意义。若干的新概念和新思维,赋予这个年轻的沉积学分支强大的生命力,同时也代表了沉积学在近年来的一个重要进展之一。

Lots of studies on the microbial mat from the modern examples to the rock records show that the microbial mat is actually a complex microbial community. Just like a complex food web, microbial mats are communities of microorganisms in which each member depends and is depended on by others in the community. Importantly, this special microbial community forms abundant and sophisticated records in sedimentary rocks. For these records, the stromatolite is the typical represent of microbial mats in carbonate rocks, and the MISS (Microbial induced sedimentary structure) is the representative product that is related to microbial mats in siliclastic rocks. Longterm researches on these special records result in a young branch of sedimentology, i.e. “microbial-mat sedimentology” within the framework of geobiology, which plays a key role in the further studies of the evolution of the early life and in the further understanding of the evolutional rules of both the atmosphere and the hydrosphere in the earth. Lots of new concepts and thoughts have provided  this young branch of sedimentology with the powerful vitality, which marks an important advancement of sedimentology.

中图分类号: 

[1]Brock T D, Madigan M T, Martinko J M,et al. Biology of Microorganisms[M]. New Jersey: Prentice Hall, 1994.
[2]Altermann W. The evolution of life and its impact on sedimentation[C]Altermann W, Corcoran P L. Precambrian Sedimentary Environments: A   Modern Approach to Ancient Depositional Systems. Oxford: Blackwell Science, IAS Special Publication 33, 2002:15-32.
[3]Krumbein W E. The year of the slime[M]Krumbein W E, Paterson D M, Stal L J. Biostabilization of Sediments. Oldenburg:(BIS) Verlag, 1994:1-7.
[4]Darwin C. Journal of the Researches into the Geology and Natural History of the Various Countries Visited by HMS Beagle, vol. 1 (reprint 1958)[M]. New York: Appleton and Company, 1839.
[5]Kalkowsky E. Oolith and stromatolith in norddeutschen Bundsandstein[J].Zeitschrift der Deutschen Geologischen Gesellschaft,1908, 60: 68-125.
[6]Black M. The algal sediments of Andros Islands, Bahamas[J].Philosophical Transactions of the Royal Society,1933, Series B: 165-192.
[7]Cloud P E. Notes on stromatolites[J].American Journal of Sciences,1942, 240: 363-379.
[8]Krumbein W E.Cyanobakterien-Bakterien Oder Algen?[M].Oldenburg: Oldenburger Symposium Fiber Cyanobakterien, 1979.
[9]Krumbein W E. Stromatolites the challenge of a term in space and time[J].Precambrian Research,1983, 20: 493-531.
[10]Rippka R, Deruelles J, Waterbury J B,et al. Generic assignments, strain histories and properties of pure cultures of cyanonacieria[J].Journal of General Microbioogy,1979, 111: 1-61.
[11]Margulis L, Dolan M F. Early Life: Evolution on the Precambrian Earth[M]. Sudbury: Jones and Bartlett, 2002.
[12]Lovelock J E. The Ages of Gaia[M]. New York: W.W. Norton, 1988.
[13]Logan B W, Hoffman P, Gebelein C D. Evolution and diagenesis of Quaternary Carbonate Sequence, Shark Bay, West Australia[J].AAPG,1974, 22: 140-194.
[14]Logan B W, Rezak R, Ginsburg R N. Classification and environmental significance of algal stromatolites[J].Journal of Geology,1964, 72: 68-83.
[15]Riding R. Microbial carbonates: The geological record of calcified bacterialalgal mats and biofilms[J].Sedimentology,2000, 47: 179-214.
[16]Reid R P, Visscher P T, Decho A W,et al. The role of microbes in accretion, lamination and early lithification of modern marine stromatolites[J].Nature,2000, 406: 989-992.
[17]Vasconcelos C, Warthmann R, McKenzie J A,et al. Lithifying microbial mats in Lagoa Vermelha, Brazil: Modern Precambrian relics?[J].Sedimentary Geology,2006, 185: 175-183.
[18]Dupraz C, Reid R P, Braissant O,et al. Processes of carbonate precipitation in modern microbial mats[J].Earth Science Reviews,2009, 96: 141-162.
[19]Altermann W, Kazmierczak J, Oren A,et al. Microbial calcification and its impact on the sedimentary rock record during 3.5 billion years of Earth history[J].Geobiology,2006, 4: 147-166.
[20]Davis R A. Algal stromatolites composed of quartz sandstone[J].Journal of Sedimentory Petrology,1968, 38: 953-955.
[21]Schieber J. The possible role of benthic microbial mats during the formation of carbonaceous shales inerozoic basins[J].Sedimentology,1986, 33: 521-536.
[22]Füchtbauer H. Sedimente and Sedimentgesteine[M]. Stuttgart: Schweizerbart, 1988.
[23]Blatt H. Sedimentary Petrology[M]. New York: W.H. Freeman, 1992.
[24]Boggs S. Principles of Sedimentology and Stratigraphy[M]. Upper Saddle River: Prentice Hall, 1995.
[25]Reading H G. Sedimentary Environments: Processes, Facies and Stratigraphy[M]. Oxford: Blackwell Science, 1996.
[26]Boggs S. Petrology of Sedimentary Rocks[M]. Cambridge: Cambridge University Press, 2009.
[27]Tucker M E. Sedimentary Petrology[M]. Oxofrd: Blackwell Science, 2001.
[28]Nichols G. Sedimentology and Stratigraphy[M]. Oxford: Wiley-Blackwell, 2009.
[29]Pettijohn F J. Sedimentary Rocks[M]. New York: Harper, 1957.
[30]Hagadorn J W, Pfiüger F, Bottjer D J. Unexplored microbial worlds[J].Palaios,1999,14: 1-2.
[31]Riding R E, Awramik S M. Microbial Sediments[M]. Berlin: Springer-Verlag, 2000.
[32]Schieber J. Microbial mats in terrigenous clastics: The challenge of identification in the rock records[J].Palaios,1999, 14: 3-12.
[33]Seilacher A, Pflüger F. From biomats to benthic agriculture: A biohistoric revolution[C]Krumbein W E, Paterson D M, Stal L J. Biostabilization of Sediments. Oldenberg: Bibliotheks und Informationssystem der Carl von Ossietzky Universität Oldenberg, 1994:97-105.
[34]Pflüger F. Matground structures and redox facies[J].Palaios,1999, 14: 25-39. 
[35]Noffke N, Gerdes G, Klenke T,et al. Microbially induced sedimentary structures—A new category within the classification of primary sedimentary structures[J].Journal of Sedimentary Research,2001,71: 649-656.
[36]Mei Mingxiang, Gao Jinhan, Meng Qingfen. From the matground structure to the primary sedimentary structure of a fifth category: Significant concepts on sedimentology
[J].Geosciences,2006, 20(3): 413-422.[梅冥相, 高金汉, 孟庆芬. 从席底构造到第五类原生沉积构造:沉积学中较为重要的概念[J]. 现代地质, 2006, 20(3): 413-422.]
[37]Schieber J. Microbial mats in the siliclastic rock record: A summary of diagnostic features[C]Errickson P G, Alterman W, Nelson D R, et al. The Precambrian Earth: Tempos and Events. Amsterdam: Elsevier, 2004:663-673.
[38]Madigan M T, Martinko J M. Brock Biology of Microorganisms[M]. Upper Saddle River: Prentice Hall, 2006.
[39]Schieber J, Bose P K, Eriksson P G,et al. Atlas of Microbial Mat Features Preserved within the Siliclastic Rock Record[M]. Amsterdam: Elsevier, 2007.
[40]Grotzinger J P, Knoll A H. Stromatolites in Precambrian carbonates: Evolutionary mileposts or environmental dipsticks?[J].Annual Review of Earth and Planetary Sciences,1999, 27: 313-358.
[41]Riding R, Liang L. Geobiology of microbial carbonates: Metazoan and seawater saturation state influences on secular trends during the Phanerozoic[J].Palaeogeography, Palaeoclimatology, Palaeoecology,2005, 219: 101-115.
[42]Dupraz C, Pattisina R, Verrecchia E P. Translation of energy into morphology: Simulation of stromatolite morphospace using a stochastic model[J].Sedimentary Geology,2006, 185: 185-203.
[43]Grotzinger J P, Rothman D H. An abiotic model for stromatolite morphogenesis[J].Nature,1996, 383: 423-425.
[44]Semikhatov M A, Raaben M E. Proterozoic stromatolite taxonomy and biostratigraphy[C]Ridding R, Awramik S M. Microbial Sediments. Heideberg: SpringerVerlag, 2000:295-306.
[45]Cao Ruiji, Yuan Xunlai. Stromatolites[M].Hefei: University of Technology and Science Press,2006.[曹瑞骥, 袁训来.叠层石[M].合肥: 中国科学技术大学出版社, 2006.]
[46]Decho A W, Visscher P T, Reid R P. Production and cycling of natural microbial exopolymers (EPS) within a marine stromatolite[J].Palaeogeography, Palaeoclimatology, Palaeoecology,2005, 219: 71-86.
[47]Dupraz C, Visscher P T, Baumgartner L K,et al. Microbe mineral interactions: Early CaCO3 precipitation in a recent hypersaline lake (Eleuthera Islands, Bahamas)
[J].Sedimentology,2004, 51: 745-765.
[48]Dupraz C, Visscher P T. Microbial lithification in marine stromatolites and hypersaline mats[J].Trends in Microbiology, 2005, 13:429-438.
[49]Mann C J, Nelson W M. Microbialitic structures in Storr's Lake, San Salvador Island, Bahamas Islands[J].Palaios,1989, 4: 287-293.
[50]Baumgartner L K, Reid R P, Dupraz C,et al. Sulfate reducing bacteria in microbial mats: Changing paradigms, new discoveries[J].Sedimentary Geology,2006, 185: 131-145.
[51]Papineau D,Walker J, Mojzsis S J, et al. Composition and structure of microbial communities from stromatolites of Hamelin Pool in Shark Bay, Western Australia[J].Applied and Environmental Microbiology,2005,71:4 822-4 832.
[52]Ley R E, Harris J K, Wilcox J, et al. Unexpected diversity and complexity of the Guerrero Negro hypersaline microbial mat[J].Applied and Environmental Microbiology, 2006, 72: 3 685-3 695.
[53]Visscher P T, Stolz J F. Microbial mats as bioreactors: Populations, processes and products[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 219:87-100.
[54]Kah L C, Knoll A H. Microbenthic distribution of Proterozoic tidal flats: Environmental and taphonomic considerations[J].Geology,1996, 24: 79-82.
[55]Grotzinger J P, James N P. Precambrian carbonates: Evolution of understanding[C]Grotzinger J P, James N P. Carbonate Sedimentation and Diagenesis in the Evolving Precambrian World. SEPM Special Publication, 67, 2000: 3-22.
[56]Mei Mingxiang, Gao Jinhan, Meng Qinfen, et al. Sedimentary features and their implications of microdigital stromatolites from the Mesoproterozoic Wumishan Formation at the Jixian section in North China[J].Acta Geologica Sinica (English Edition),2010, 84: 483-496.
[57]Pope M C, Grotzinger J P, Schreiber B C. Evaporitic subtidal stromatolites produced by in situ precipitation: Textures, facies associations, and temporal significance[J].Journal of Sedimentary Research,2000, 70: 1 139-1 151.
[58]Riding R. Microbial carbonate abundance compared with fluctuations in metazoan diversity over geological time[J].Sedimentary Geology,2006, 185: 229-238.
[59]Schubert J K, Bottjer D J. Aftermath of the Permian Triassic mass extinction event: Paleoecology of Lower Triassic carbonates in the western USA[J].Palaeogeography, Palaeoclimatology, Palaeoecology,1995, 116: 1-39.
[60]Wang Yongbiao, Tong Jinnan, Wang Jiasheng, et al. Calcimicrobialite after endPermian mass extinction in South China and its paleoenvironmental significanc[J].Chinese Science Bulletin, 2005, 50(6): 552-558.[王永标, 童金南, 王家生, 等. 华南二叠纪末大灭绝后的钙质微生物岩及古环境意义[J]. 科学通报, 2005, 50 (6): 552-558.][61]Gerdes G, DunajtschikPiewak K, Riege H, et al. Structural diversity of biogenic carbonate particles in microbial mats[J]. Sedimentology,1994, 41: 1 273-1 294.
[62]Brehm U, Krumbein W E, Palinska K A. Biomicrospheres generate ooids in laboratory[J]. Geomicrobiology Journal,2006, 23: 545-550.
[63]Tucker M E, Wright V P. Carbonate Sedimentology[M].Oxford: Blackwell Sciences, 1990.
[64]Lowe D R. Abiological origin of described stromatolites older than 3.2 Ga[J].Geology,1994, 22: 387-390.
[65]Hofmann H J, Grey A H, Hickman A H,et al. Origin of 3.45 Ga coniform stromatolites in Warrawoona Group, Western Australia[J].Geological Society of America Bulletin, 1999, 111:1 256-1 262.
[66]Allwood A C, Walter M R, Kamber B S, et al. Stromatolite reef from the Early Archaean era of Australia[J].Nature, 2006, 441: 714-718.
[67]Allwood A C, Walter M R, Burch I W, et al. 3.43 billionyearold stromatolite reef from the Pilbara Craton of Western Australia: Ecosystem-scale insights to early life on Earth[J].Precambrian Research,2007, 158: 198-227.
[68]Schopf J W. Fossil evidence of Archean life[J].Philosophical Transactions of the Royal Society,2006, 361(1 470): 869-885.
[69]Awramik S M, Sprinkle J. Proterozoic stromatolites: The first marine evolutionary biota[J].Historical Biology,1999, 13: 241-253.
[70]Kah L C, Riding R. Mesoproterozoic carbon dioxide levels inferred from calcified cyanobacteria[J]. Geology,2007,35: 799-802.
[71]Hofmann H J. Precambrian fossils, pseudofossils and problematica in Canada[J]. Bulletin of Geological Survey of Canada,1971,189: 146-147.
[72]Gao Jianhua, Cai Keqin, Yang Shipu, et al. The observation of the oldest trace fossils in the Changchengian System[J]. Chinese Scientific Bulltetin,1993, 38(20): 1 891-1 895.[高建华, 蔡克勤, 杨式溥,等. 蓟县长城系中发现最古老的遗迹化石[J]. 科学通报, 1993, 38(20): 1 891-1 895.]
[73]Yang Shipu, Zhang Jianping, Yang Meifang. Trace Fossils of China [M]. Beijing: Science Press, 2004.[杨式溥, 张建平, 杨美芳. 中国遗迹化石[M]. 北京: 科学出版社,2004.]
[74]Knaust D, Hauschke N. Trace fossils versus pseudofossils in Lower Triassic playa deposits, Germany[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2004, 215: 87-97.
[75]Häntzschel W. Trace fossils and problematica[C]Teichert C. Treatise on Invertebrate Paleontology, Part W, Supplement 1. Lawrence: Geological Society of America and University of Kansas Press, 1975:269-270.
[76]Hagadorn J W, Bottjer D J. Wrinkle structures: Microbially mediated sedimentary structures common in subtidal siliciclastic settings at the Proterozoic Phanerozoic transition[J].Geology,1997, 25: 1 047-1 050.
[77]Porada H, Bouougri E H. Wrinkle structures—A critical review[J]. Earth-Science Reviews,2007, 81: 199-215.
[78]Mata S A, Bottjer D J. The paleoenvironmental distribution of Phanerozoic wrinkle structures[J]. Earth-Science Reviews,2009, 96: 181-195.
[79]Walter M R. Tectonically deformed sand volcanoes in a Precambrian greywacke, Northern Territory of Australia[J].Journal of the Geological Society of Australia,1972, 18: 395-399.
[80]Pickerill R K, Harris L M. A reinterpretation of Astropolithon hindii Dawson 1878[J].Journal of Sedimentary Petrology,1979, 49: 1 029-1 036.
[81]Seilacher A, Goldring R. Class Psammocorallia (Coelenterata, Vendian-Ordovician): Recognition, systematics, and distribution[J].Geologiska Föreningens  Stockholm Förhandlingar,1996, 118: 207-216.
[82]Gong Yiming, Zhang Kexin. Basics and Frontiers in Stratigraphy[M]. Wuhan: Press of China University of Geosciences, 2007.[龚一鸣, 张克信. 地层学基础和前沿[M].武汉: 中国地质大学出版社, 2007.]
[83]Noffke N. The concept of geobiological studies: The example of bacterially generated structures in physical sedimentary systems[J].Palaios,2002, 17: 1-2.
[84]Olszewski T D. Geobiology: A golden opportunity and a call to action[J].Palaios,001, 16: 1-2.
[85]Noffke N. Geobiology—A holistic scientific discipline[J].Palaeogeography, Palaeoclimatology, Palaeoecology,2005, 219: 1-3.
[86]Knoll A H. The geological consequences of evolution[J].Geobiology,2003, 1: 3-14.
[87]Yin Hongfu. Biogeology[J].Advances in Earth Science,1994, 9(6): 79-82.[殷鸿福. 生物地质学[J].地球科学进展,1994, 9(6): 79-82.]
[88]Knoll A H, Hayes J M. Geobiology: Articulating a concept[C]Lane R H, Lipps J, Steininger F F, et al. Paleontology in the 21st Century: Frankfurt, International Senckenberg Conference. Senckenberg: Kleine Senckenberg, 1997, 25: 105-108.
[89]Xie Shucheng, Gong Yiming, Tong Jinnan,et al. The spanning from palaeontology to geobiology[J].Chinese Scientific Bulletin,2006, 51(19): 1 327-1 336.[谢树成, 龚一鸣, 童金南, 等. 从古生物学到地球生物学的跨越[J]. 科学通报,2006, 51(19): 1 327-1 336.]
[90]Seilacher A. Biomatrelated lifestyles in the Precambrian[J].Palaios,1999,14: 86-93.
[91]Noffke N. Multidirected ripple marks rising from biological and sedimentological processes in modern lower supratidal deposits (Mellum Island, southern North Sea)[J].Geology,1998, 26: 879-882.
[92]Pflüger F, Gersse P G. Microbial sand chip—A nonactualistic sedimentary structure[J].Sedimentary Geology,1996, 102: 263-274.
[93]Pettijohn F J, Potter P E. Atlas and Glossary of Primary Sedimentary Structure[M].Berlin: SpringerVerlag, 1964.
[94]Noffke N. The criteria for the biogeneicity of Microbially Induced Sedimentary Structures (MISS) in Archean and younger, sandy deposits[J].EarthScience Reviews, 2009, 96: 173-180.
[95]Gerdes G. Structures left by modern microbial mats in their host sediments[C]Schieber J, Bose P K, Eriksson P G, et al. Atlas of Microbial Mat Features Preserved within the Siliclastic Rock Record.Amsterdam: Elsevier, 2007:5-38.
[96]Krumbein W E, Paterson D M, Zavarzin G A. Fossil and Recent Biofilms[M]. Dordrecht: Kluwer Academic Publishers, 2003.
[97]Gerdes G, Klenke T, Noffke N. Microbial signatures in peritidal siliciclastic sediments: A catalogue[J].Sedimentology,2000, 47: 279-308.
[98]Sarkar S, Banerjee S, Eriksson P G. Microbial mat features in sandstones illustrated[C]Eriksson P G, Altermann W, Nelson D R, et al. The Precambrian Earth: Tempos and Events. Amsterdam: Elsevier, 2004:673-675.
[99]Noffke N, Eriksson K A, Hazen R M, et al. A new window into Early Archean life: Microbial mats in Earth′s oldest siliciclastic deposits (3.2 Ga Moodies Group, South Africa)[J].Geology,2006, 34: 253-256.
[100]Squyres S W,Grotzinger J P,Arvidson R E, et al. In situ evidence for an ancient aqueous environment at Meridiani Planum, Mars[J].Science,2004,306:1 709-1 714.
[101]Decho A W, Visscher P T, Ferry J, et al. Autoinducers extracted from microbial mats reveal a surprising diversity of N-acylhomoserine Lactones (AHL′s) and abundance changes that may relate to diel pH[J]. Environmental Microbiology,2009, 11: 409-420.

[1] 王龙, KhalidLatif, MuhammadRiaz, 刘晓晔. 微生物碳酸盐岩的成因、分类以及问题与展望——来自华北地台寒武系微生物碳酸盐岩研究的启示[J]. 地球科学进展, 2018, 33(10): 1005-1023.
[2] 郭荣涛. 硅质碎屑岩中的微生物席相关构造——联接现代与过去的纽带[J]. 地球科学进展, 2013, 28(4): 467-476.
阅读次数
全文


摘要