地球科学进展 ›› 2013, Vol. 28 ›› Issue (4): 420 -428. doi: 10.11867/j.issn.1001-8166.2013.04.0420

综述与评述 上一篇    下一篇

深海溶解态锰和铁的原位分析技术研究进展
潘安阳, 杨群慧*, 周怀阳, 王虎, 季福武   
  1. 同济大学海洋地质国家重点实验室,上海200092
  • 收稿日期:2012-04-26 修回日期:2013-03-09 出版日期:2013-04-10
  • 通讯作者: 杨群慧(1969-),女,湖南衡阳人,副教授,主要从事海洋地质学研究. E-mail:yangqh@tongji.edu.cn
  • 基金资助:

    国家重点基础研究发展计划项目“西南印度洋洋中脊热液成矿过程与硫化物矿区预测”(编号:2012CB417300);国家高技术研究发展计划项目“深海示踪气体现场快速检测系统”(编号:2010AA09Z201)资助.

Development of Insitu Analyzing Technologies of Dissolved Manganese and Iron in Deep-Sea Seawater

Pan Anyang, Yang Qunhui, Zhou Huaiyang, Wang Hu, Ji Fuwu   

  1. State Key Laboratory of Marine Geology, Tongji University, Shanghai200092, China
  • Received:2012-04-26 Revised:2013-03-09 Online:2013-04-10 Published:2013-04-10

溶解态的锰和铁是海洋中重要的生物营养元素,也是探查海底热液活动及其演化的重要示踪剂。由于海底热液活动研究的迫切需求,以及AUV,ROV和HOV等水下运载支撑平台的迅速发展,20世纪80年代以来深海溶解态锰铁原位分析技术得到了快速发展。早期研发的Scanner和SUAVE,可对热液羽流中高含量的锰铁元素实现联合测定,但存在元素之间相互干扰等问题,因此针对锰、铁元素单独测量的原位分析仪应运而生。锰原位分析仪中,ZAPS虽然具有较低的检测限,但是无法在深海高压环境下进行原位校正;GAMOS系列具有原位校正功能,且能耗较低,可长期运行,但是检测限偏高,因此只能应用于热液环境中含量相对高的锰监测。铁原位分析仪中,改进的ALCHIMIST可实现热液喷口异常高含量铁和正常海域水体中低含量铁的检测,但由于能耗较高而难以应用于长期观测中;低能耗的Fe-Osmo-Analyzer和CHEMINI则在长期运行方面有着明显的优势。随着AUV/ROV/HOV等水下移动平台应用的日渐广泛以及海底观测网技术的迅速发展,发展原位分析仪进行长期的自主观测将成为一种必然趋势。

Dissolved manganese and iron are important elements as biological nutrients in marine and major tracers of probing hydrothermal activities and their evolution. Due to the urgent needs of the study of seafloor hydrothermal activities and the rapid development of supporting platform of underwater vehicles, such as AUV, ROV and HOV, the in-situ analyzing technologies of dissolved manganese and iron in deep seawater have been rapidly developed since the 1980s. The early development of Scanner and SUAVE can detect the high contents of manganese and iron in hydrothermal plumes simultaneously,but the problems of mutual inference between elements exist. Therefore, in situ analyzers for separate measurements of manganese and iron came into being. For the in situ manganese analyzers, ZAPS had a lower limit of detection, but it cannot be calibrated in situ because of the high pressure environment in deep sea; GAMOS series had the merits of in-situ calibration function, lower power consumption and long-time running, but relatively high detection limit caused them only applicable for detecting comparatively abundant manganese in hydrothermal environment. For the in situ iron analyzers, the modified ALCHIMIST can realize the detection of abnormally high content of iron around hydrothermal vents and low content of iron in normal seawater, but it can not be applied in the long-term observation yet because of the problem of high power consumption. However, the Fe-Osmo-Analyzer and CHEMINI with lower power consumption had a significant advantage in the matter of long-time running. With the widespread use of AUV/ROV/HOV and other underwater platforms and the rapid progress of seafloor observatory, the development of in situ analyzer for long-time observation will become an inevitable trend.

中图分类号: 

[1]Lucinda J, Peter S L. Photochemically induced redox reactions in seawater, I. Cations[J]. Marine Chemistry, 1995, 49: 201-213.



[2]Bruland K W. Trace elements in seawater[M]∥Riley J P, Chester R, eds. Chemical Oceanography. London: Academic Press, 1983: 157-220. 



[3]Martin J H, Gordon R M, Fitzwater S E. Iron in Antarctic waters[J]. Nature, 1990, 345: 156-158.



[4]Von Damm K L. Controls on the chemistry and temporal variability of seafloor hydrothermal fluids[M]∥Humhris S E, Zierenberg R A, Mullineaux L S, et al, eds. Seafloor Hydrothermal Systems: Physical, Chemical, Biological and Geological Interactions. Washington DC: American Geological Union, 1995, 91: 222-247.



[5]Chapin T P, Jannasch H W, Johnson K S. In situ osmotic analyzer for the year-long continuous determination of Fe in hydrothermal systems[J]. Analytica Chimica Acta, 2002, 463: 265-274.



[6]Johnson K S, Beehler C L, Sakamoto A A. A submersible flow analysis system[J]. Analytica Chimica Acta, 1986, 179: 245-257.



[7]Johnson K S, Beehler C L, Sakamoto A C M, et al. In situ measurements of chemical distribution in a deep-sea hydrothermal vent field[J]. Science, 1986, 231: 1 139-1 141.



[8]Massoth G J, Milburn H B, Johnson K S, et al. A SUAVE (Submersible System Used to Assess Vented Emissions) approach to plume sensing: The buoyant plume experiment at Cleft segment, Juan de Fuca Ridge, and plume exploration along the EPR 9-10°N[J]. EOS, Transaction American Geophysical, Union, 1991, 72: 234.



[9]Klinkhammer G P. Fiber optic spectrometers for in-situ measurements in the oceans: The ZAPS probe[J]. Marine Chemistry, 1994, 47: 13-20.



[10]Okamura K, Kimoto H, Saeki K, et al. Development of a deep sea in situ Mn analyzer and its application for hydrothermal plume observation[J]. Marine Chemistry, 2001, 76: 17-26.



[11]Okamura K, Hatanaka H, Kimoto H, et al. Development of an in situ manganese analyzer using micro-diaphragm pumps and its application to time-series observations in a hydrothermal field at the Suiyo seamount[J]. Geochemical Journal, 2004, 38: 635-642.



[12]Le Bris N, Sarradin P M, Birot D, et al. A new chemical analyzer for in situ measurement of nitrate and total sulfide over hydrothermal vent biological communities[J]. Marine Chemistry, 2000, 72: 1-15.



[13]Sarrazin J, Sarradin P M, the MoMARETO Cruise Participants. MoMARETO: A cruise dedicated to the spatio-temporal dynamics and the adaptations of hydrothermal vent fauna on the Mid-Atlantic Ridge[J]. InterRidge News, 2006, 15: 24-33.



[14]Vuillemin R, Le Roux D, Dorval P, et al. CHEMINI: A new in situ CHEmical MINIaturized analyzer[J]. Deep-Sea Research I, 2009, 56: 1 391-1 399.



[15]Ruzicka J,Hansen E H. Flow Injection Analysis (2nd ed)[M]. New York: John Wiley&Sons, 1988.



[16]Karlberg B, Pacey G E. Flow Injection Analysis Principle[M]. The Netherland: Elsevier Science Publishers B. V., 1989: 6-14.



[17]Chin C S, Coale K H, Elrod V A, et al. In situ observations of dissolved iron and manganese in hydrothermal vent plumes, Juan de Fuca Ridge[J]. Journal Geophysical Research, 1994, 99: 4 969-4 984.



[18]Chin C S, Johnson K S, Coale K H. Spectrophotometric determination of dissolved manganese in natural waters with 1-(2-pyridylazo)-2-naphthol: Application to analysis in situ analysis in hydrothermal plumes[J]. Marine Chemistry,1992,37:65-82.



[19]Stookey L L. Ferrozine—A new spectrophotometric reagent for iron[J].Analytical Chemistry,1970,42:779-781.



[20]Resing J A, Mottl M. Determination of manganese in seawater using flow injection analysis with online preconcentration and spectrophotometric detection[J].Analytical Chemistry,1992,64:2 682-2 687.



[21]Measures C I, Yuan J, Resing J A. Determination of iron in seawater by flow injection analysis using in-line preconcentration and spectrophotometric detection[J]. Marine Chemistry, 1995, 50: 3-12.



[22]Massoth G J, Baker E T, Feely R A, et al. Manganese and iron in hydrothermal plumes resulting from the 1996 Gorda Ridge Event[J]. Deep-Sea Research  I,1998,45:2 683-2 712.



[23]Gamo T, Okamura K, Hasumoto H, et al. Evidence for submarine hydrothermal activity at the southernmost Mariana Trough[J]. EOS, Transaction American Geophysical, Union, Fall Meet Supplement,1998, 79(45): Abstract OS71B-22. 



[24]Gamo T,Nakayama E, Shitashima K, et al. Hydrothermal plumes at the Rodriguez triple junction, Indian Ridge[J]. Earth Planetary Science Letters, 1996, 142: 261-270.



[25]Gamo T, Okamura K, Mitsuzawa K, et al. In situ measurement of dissolvable Mn in bottom seawater in combination with a Deep-Sea cable off Hatsushima Island, Western Sagami Bay, Japan[C]∥Underwater Technology and Workshop on Scientific Use of Submarine Cables and Related Technologies. New York: Academic Press, 2007: 356-361.



[26]Zagatto E A G, Arruda M A Z, Jaeintho A O, et al. Compensation of the Schlieren effect in flow-injection analysis by using dual-wavelength spectrophotometry[J]. Analytica Chimica Acta, 1990, 234: 153-160. 



[27]Sarradin P M, Bris N L, Gall C L, et al. Fe analysis by the ferrozine method: Daptation to FIA towards in situ analysis in hydrothermal environment[J]. Talanta, 2005, 66: 1 131-1 138.



[28]Daniel A, Birot D, Lehaitre M, et al. Characterization and reduction of interferences in flow-injection analysis for the in situ determination of nitrate and nitrite in sea water[J]. Analytica Chimica Acta, 1995, 308: 413-424.



[29]Laës A, Vuillemin R, Leilde B, et al. Impact of environmental factors on in situ determination of iron in seawater by flow injection analysis[J]. Marine Chemistry, 2005, 97: 347-356.

[1] 阮雅青,张瑞峰. 海水中铜的生物地球化学研究进展[J]. 地球科学进展, 2020, 35(12): 1243-1255.
[2] 黄思静, 李小宁, 武文慧, 张萌, 胡作维, 刘四兵, 黄可可, 钟怡江. 显生宙海相碳酸盐高 δ 13C时期的古海洋学[J]. 地球科学进展, 2015, 30(11): 1185-1197.
[3] 胡作维, 李云, 李北康, 黄思静, 韩信. 显生宙以来海水锶同位素组成研究的回顾与进展[J]. 地球科学进展, 2015, 30(1): 37-49.
[4] 刘花台, 郭占荣. 海底地下水排泄的研究进展[J]. 地球科学进展, 2014, 29(7): 774-785.
[5] 孙永明,史久新,阳海鹏. 海水热力学方程TEOS-10及其与海水状态方程EOS-80的比较[J]. 地球科学进展, 2012, 27(9): 1014-1025.
[6] 赵栋梁. 海洋飞沫及其对海—气相互作用影响的研究进展[J]. 地球科学进展, 2012, 27(6): 624-632.
[7] 杨吉龙,韩冬梅,苏小四,肖国强,赵长荣,宋庆春,汪娜. 环境同位素特征对滨海岩溶地区海水入侵过程的指示意义[J]. 地球科学进展, 2012, 27(12): 1344-1352.
[8] 李海龙,万力,焦赳赳. 海岸带水文地质学研究中的几个热点问题[J]. 地球科学进展, 2011, 26(7): 685-694.
[9] 于新生, 李丽娜,胡亚丽,兰志刚. 海洋中溶解甲烷的原位检测技术研究进展[J]. 地球科学进展, 2011, 26(10): 1030-1037.
[10] 黄小慧,王汝建,翦知湣,王吉良. 全新世冲绳海槽北部表层海水温度和初级生产力对黑潮变迁的响应[J]. 地球科学进展, 2009, 24(6): 652-661.
[11] 刘羿,彭子成,刘卫国,肖应凯,孙若愚,贺剑峰,刘桂建. 古海水pH值代用指标——海洋碳酸盐硼同位素研究进展[J]. 地球科学进展, 2007, 22(12): 1240-1250.
[12] 李建如. 有孔虫壳体的Mg/Ca比值在古环境研究中的应用[J]. 地球科学进展, 2005, 20(8): 815-822.
[13] 龚庆杰,吴时国,罗又郎. U 37 K与海水表层温度[J]. 地球科学进展, 1997, 12(3): 284-289.
[14] 陈建芳,郑连福. 古海洋、古气候研究的新工具——分子温度计[J]. 地球科学进展, 1996, 11(4): 404-408.
[15] 吴世迎. 大洋钻探与深海热液作用[J]. 地球科学进展, 1995, 10(3): 223-228.
阅读次数
全文


摘要