地球科学进展 ›› 2012, Vol. 27 ›› Issue (9): 1014 -1025. doi: 10.11867/j.issn.1001-8166.2012.09.1014

新学科·新技术·新发现 上一篇    下一篇

海水热力学方程TEOS-10及其与海水状态方程EOS-80的比较
孙永明 1,史久新 1,阳海鹏 2   
  1. 1.中国海洋大学海洋环境学院,山东 青岛 266100;2.海军潜艇学院,山东 青岛 266100
  • 收稿日期:2012-03-22 修回日期:2012-06-04 出版日期:2012-09-10
  • 通讯作者: 孙永明(1988-),男,山东青岛人,博士研究生,主要从事极地海洋研究.E-mail:sunymouc@gmail.com
  • 基金资助:

    海洋公益性行业科研专项“北极海洋生态系统对海冰快速变化响应的评价技术”(编号:201105022);教育部新世纪优秀人才支持计划“南北极海冰长期变化趋势差异的海洋动力学分析研究”(编号:NCET-10-0720)资助.

The Thermodynamic Equation of Seawater 2010 and Its Comparison with the Equation of Seawater 1980

Sun Yongming 1, Shi Jiuxin 1, Yang Haipeng 2   

  1. 1.College of Physical and Environmental Oceanography, Ocean University of China, Qingdao 266100, China;2.Naval Submarine College, Qingdao 266100, China
  • Received:2012-03-22 Revised:2012-06-04 Online:2012-09-10 Published:2012-09-10

新的2010年海水热力学方程TEOS-10采用1990年国际温标以及考虑世界大洋海水组成空间差异的绝对盐度,与旧的1980年海水状态方程EOS-80相比,具有更高的准确度和更广的适用范围,能够直接计算包括熵、焓、热容量在内的旧方程无法计算的热力学变量,将给海洋学研究带来重要的影响。借助气候态平均数据计算的结果表明,新旧方程计算的密度之差,在全球大多数海域可超过10-2 kg/m3。在赤道以北的太平洋和印度洋海域,包括中国东海和南海的深海区域,该差别尤为显著,在精度要求较高的研究中必须予以考虑。新方程对密度计算的这一修正主要归因于其首次提出的绝对盐度,考虑了包括中性溶质在内的所有溶质的作用,弥补了实用盐标的缺陷。新旧方程计算冰点等其他物理量也有相应的修正。应尽快推广应用TEOS-10以及绝对盐度,充分发挥其对海洋学发展的推动作用。

 With the International Temperature Scale 1990 and the Absolute Salinity that accounts for the effects of the spatial variation of seawater composition around the world ocean, the new International Thermodynamic Equation of Seawater 2010 (TEOS-10) has higher accuracy and wider application scope, Compared to the Equation of Seawater 1980 (EOS-80). TEOS-10 allows the calculation of many thermodynamic quantities, such as entropy, enthalpy and heat content, that were not available from EOS-80. Therefore, TEOS-10 will make significant impacts on the development of oceanography. TEOS-10 is compared with EOS-80 based on their applications on climatological averaged data. The difference of the calculated density with these two equations reaches 10-2 kg/m3 in most regions of the world ocean. It is particularly significant in the North Pacific Ocean, North Indian Ocean and also the deep areas in East China Sea and the South China Sea. So in these regions, this difference must be considered in the studies and applications that require high accuracy. The improvements of the new equation are mostly due to a new salinity variable, Absolute Salinity that considers the impacts of all the solutes in seawater, including the neutral solutes, which could make up the deficiency of the Practical Salinity. In order to promote the development of oceanography, the Absolute Salinity and TEOS-10 are recommended to be applied as soon as possible.

中图分类号: 

[1]UNESCO. The Practical Salinity Scale 1978 and the International Equation of State of Seawater 1980[R]. UNESCO Technical Papers in Marine Science, 1981:36.

[2]Saunders P.The international temperature Scale of 1990, ITS-90[J]. WOCE New Letter, 1990,5:10.

[3]Yao Yong, Wei Wei, Chen Huaqiu. Study of the ITS-90’s influence on 80 International Equation of Seawater State(IESS-80)[J]. Ocean Technology, 2001, 20(3):74-78.[姚勇,卫薇, 陈华秋. 90国际温标对80国际海水状态方程影响的研究[J]. 海洋技术,2001,20(3):74-78.]

[4]Wieser M E.Atomic weights of the elements 2005[J].Pure and Applied Chemistry, 2006, 78(11): 2 051-2 066.

[5]IAPWS. Release on the IAPWS Formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use[C]∥The International Association for the Properties of Water and Steam. Fredericia,1996.

[6]IAPWS. Release on an equation of state for H2O ice Ih[C]∥The International Association for the Properties of Water and Steam. Witney, 2006.

[7]Bao Wanyou, Liu Ximin, Zhang Hao. The narrow and broad senses on the salinity scale[J]. Acta Oceanologica Sinica,2011,23(2):52-56.[包万友,刘喜民,张昊. 盐度定义狭义性与广义性[J]. 海洋学报,2001,23(2):52-56.]

[8]Marcet A. On the specific gravity, and temperature of sea water, in different parts of the ocean, and in particular seas; with some account of their saline contents[J]. Philosophical Transactions of the Royal Society of London, 1819,109:161-208.

[9]Millero F J. Chemical Oceanography[M]. Boca Raton,FL: CRC Taylor and Frances Group, 2006:496.

[10]Millero F J, Feistel R, Wright D G, et al. The composition of Standard Seawater and the definition of the reference-composition salinity scale[J]. Deep-Sea Research, 2008, 55:50-72.

[11]Logan B W, Cebulsk D E. Sedimentary environments of Shark Bay, western Australia[C]∥Carbonate Sedimentation and Environments, Shark Bay, Western Australia, Memoir No.13. The American Association of Petroleum Geologists, 1970:1-37.

[12]Bacon S, Fofonoff N P. Oceanic heat flux calculation[J]. Journal of Atmospheric and Oceanic Technology, 1996, 13:1 327-1 329.

[13]McDougall T J. Potential enthalpy: A conservative oceanic variable for evaluating heat content and heat fluxes[J]. Journal of Physical Oceanography, 2003, 33: 945-963.

[14]Saunders P M. The Bernoulli function and flux of energy in the ocean[J]. Journal of Geophysical Research, 1995,100(C11):22 647-22 648.

[15]Feistel R. A Gibbs function for seawater thermodynamics for -6 to 80 ℃ and salinity upto120 g/kg[J]. Deep-Sea Research I, 2008, 55:1 639-1 671.

[16]Feistel R.A new extended Gibbs thermodynamic potential of seawater[J]. Progress in Oceanography, 2003, 58:43-114.

[17]Feistel R, Wagner W. A new equation of state for H2O ice Ih[J]. Journal of Physical and Chemical Reference Data, 2006, 35(2):1 021-1 047.

[18]Feistel R, Marion G M. A Gibbs-Pitzer function for high-salinity seawater thermodynamics[J]. Progress in Oceanography, 2007, 74:515-539.

[19]McDougall T J, Jackett D R, Millero F J. An algorithm for estimating Absolute Salinity in the global ocean[J]. Ocean Science Discussions, 2009,6:215-242.

[20]IOC, SCOR, IAPSO. The international thermodynamic equation of seawater-2010: Calculation and use of thermodynamic properties[J]. Intergovernmental Oceanographic Commission, Manuals and Guides, 2010,56:196.

[21]McDougall T J, Barker P M. Getting started with TEOS-10 and the Gibbs Seawater (GSW) Oceanographic Toolbox 2010[Z]. May 2011, SCOR/IAPSO WG127, 28pp. http:∥www.TEOS-10.org,2011.

[22]Alberty R A. Use of legendre transforms in chemical thermo-dynamics[J]. Pure and Applied Chemistry, 2001, 73:1 349-1 380.

[23]Millero F J, Feistel R, Wright D G, et al. The composition of standard seawater and the definition of the reference-composition salinity scale[J]. Deep-Sea Research I, 2008, 55:50-72.

[24]Wagner W, Pruβ A. The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use[J]. Journal of Physical and Chemical Reference Data, 2002, 31:387-535.

[25]Millero F J. Effects of changes in the composition of seawater on the density-salinity relationship[J]. Deep-Sea Research, 2000, 47:1 583-1 590.

[26]Wright D G, Pawlowicz R, McDougall T J, et al.  Absolute Salinity, "Density Salinity" and the Reference Composition Salinity Scale: Present and future use in the seawater standard TEOS-10[J]. Ocean Science,2011, 7:1-26.

[27]Shi Jiuxin, Zhao Jinping, Jiao Yutian,et al. Pacific inflow and its links with abnormal variations in the Arctic Ocean[J]. Chinese Journal of Polar Research, 2004, 16(3):253-260.[史久新,赵进平,矫玉田,等.太平洋入流及其与北冰洋异常变化的联系[J].极地研究,2004, 16(3):253-260.]

[28]Feistel R, Weinreben S, Wolf H, et al. Density and Absolute Salinity of the Baltic Sea 2006-2009[J]. Ocean Science, 2010, 6:3-24.

[29]Millero F J. Freezing point of seawater[J].UNESCO Technical Papers in Marine Science, 1978, 28:35.

[30]Shi J, Cheng Y, Jiao Y, et al. Supercooled water in austral summer in Prydz Bay, Antarctica[J].Chinese Journal of Oceanology and Limnology, 2011,29(2):427-437.

[31]Jackett D R, McDougall T J, Feistel R, et al. Algorithms for density, potential temperature, conservative temperature, and the freezing temperature of seawater[J].Journal of Atmospheric and Oceanic Technology,2006, 23:1 709.

[32]Marion G M, Millero F J, Feistel R. Precipitation of solid phase calcium carbonates and their effect on application of seawater SA-T-P models [J]. Ocean Science, 2009,5:285-291.

[1] 阮雅青,张瑞峰. 海水中铜的生物地球化学研究进展[J]. 地球科学进展, 2020, 35(12): 1243-1255.
[2] 廖一帆, 孙宁宇, 毛竹. 地球下地幔矿物结构和热力学参数的研究进展与展望[J]. 地球科学进展, 2017, 32(5): 465-480.
[3] 黄思静, 李小宁, 武文慧, 张萌, 胡作维, 刘四兵, 黄可可, 钟怡江. 显生宙海相碳酸盐高 δ 13C时期的古海洋学[J]. 地球科学进展, 2015, 30(11): 1185-1197.
[4] 胡作维, 李云, 李北康, 黄思静, 韩信. 显生宙以来海水锶同位素组成研究的回顾与进展[J]. 地球科学进展, 2015, 30(1): 37-49.
[5] 刘花台, 郭占荣. 海底地下水排泄的研究进展[J]. 地球科学进展, 2014, 29(7): 774-785.
[6] 潘安阳, 杨群慧, 周怀阳, 王虎, 季福武. 深海溶解态锰和铁的原位分析技术研究进展[J]. 地球科学进展, 2013, 28(4): 420-428.
[7] 赵栋梁. 海洋飞沫及其对海—气相互作用影响的研究进展[J]. 地球科学进展, 2012, 27(6): 624-632.
[8] 杨吉龙,韩冬梅,苏小四,肖国强,赵长荣,宋庆春,汪娜. 环境同位素特征对滨海岩溶地区海水入侵过程的指示意义[J]. 地球科学进展, 2012, 27(12): 1344-1352.
[9] 李海龙,万力,焦赳赳. 海岸带水文地质学研究中的几个热点问题[J]. 地球科学进展, 2011, 26(7): 685-694.
[10] 于新生, 李丽娜,胡亚丽,兰志刚. 海洋中溶解甲烷的原位检测技术研究进展[J]. 地球科学进展, 2011, 26(10): 1030-1037.
[11] 黄小慧,王汝建,翦知湣,王吉良. 全新世冲绳海槽北部表层海水温度和初级生产力对黑潮变迁的响应[J]. 地球科学进展, 2009, 24(6): 652-661.
[12] 刘羿,彭子成,刘卫国,肖应凯,孙若愚,贺剑峰,刘桂建. 古海水pH值代用指标——海洋碳酸盐硼同位素研究进展[J]. 地球科学进展, 2007, 22(12): 1240-1250.
[13] 李建如. 有孔虫壳体的Mg/Ca比值在古环境研究中的应用[J]. 地球科学进展, 2005, 20(8): 815-822.
[14] 龚庆杰,吴时国,罗又郎. U 37 K与海水表层温度[J]. 地球科学进展, 1997, 12(3): 284-289.
[15] 陈建芳,郑连福. 古海洋、古气候研究的新工具——分子温度计[J]. 地球科学进展, 1996, 11(4): 404-408.
阅读次数
全文


摘要