地球科学进展 ›› 2012, Vol. 27 ›› Issue (9): 1006 -1013. doi: 10.11867/j.issn.1001-8166.2012.09.1006

黑河生态水文遥感试验 上一篇    下一篇

基于回归克里格的生态水文无线传感器网络布局优化
葛 咏 1,王江浩 1, 3,王劲峰 1,晋 锐 2,胡茂桂 1   
  1. 1.中国科学院地理科学与资源研究所资源与环境信息系统国家重点实验室,北京 100101;2. 中国科学院寒区旱区环境与工程研究所,甘肃 兰州 730000; 3. 中国科学院大学,北京 100049
  • 收稿日期:2012-05-18 修回日期:2012-07-10 出版日期:2012-09-10
  • 通讯作者: 葛咏(1972-),女,新疆奎屯人,研究员,主要从事空间数据分析与质量评价研究.E-mail:gey@lreis.ac.cn
  • 基金资助:

    国家高技术研究发展计划重大项目“星机地综合定量遥感系统与应用示范(一期)”课题“遥感产品真实性检验关键技术及其试验验证”(编号:2012AA12A305)资助.

Regression Kriging Model-based Sampling Optimization Design for the Eco-hydrology Wireless Sensor Network

Ge Yong 1, Wang Jianghao 1,3, Wang Jinfeng 1, Jin Rui 2, Hu Maogui 1   

  1. 1.State Key Laboratory of Resources and Environment Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China;2.Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences,Lanzhou 730000, China; 3.Graduate University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2012-05-18 Revised:2012-07-10 Online:2012-09-10 Published:2012-09-10

在黑河上游八宝河流域建立自动化、时空协同、智能观测的生态水文无线传感器网络,实现分布式的地面观测,对于定量刻画流域尺度时空异质性较强的生态水文要素的动态特征及其不确定性具有重要意义。在观测网设计过程中,节点的空间布局将直接影响到无线传感器网络的观测水平。为准确捕捉流域内关键生态水文要素的时空变异性和场分布,探讨了一种基于回归克里格模型的空间采样布局优化方法,并以地表温度观测网优化为例,应用到八宝河流域生态水文无线传感器网络布局方案设计中。研究结果表明,该优化方法同时考虑了目标变量与环境变量之间的相关关系以及残差在空间上的自相关特征,可以同时优化目标变量的地理空间和属性空间。优化后的无线传感器网络可以较好地捕捉流域内生态水文要素的时空动态特征。

The Babao River Basin is the upstream region of the Heihe River which is the second largest inland river basin in the arid regions of northwest China. To monitor the characteristics of space-time of the eco-hydrological processes in the Babao River Basin, this paper discussed a regression kriging modelbased sampling optimization method. Land surface temperature, as one of eco-hydrological variables in the Babao River Basin, has been exemplified. The experiment results demonstrate that this sampling optimization method can consider the relationship of target variable and environmental variables and the spatial autocorrelation of regression residuals to obtain the optimization design in the geographic space and attribute space simultaneously. The optimized WSN is more efficient to capture the temporal and spatial variations of the eco-hydrological variables for monitoring the eco-hydrology process in the Babao River Basin.

中图分类号: 

[1]Li Xin, Li Xiaowen, Li Zengyuan, et al. Watershed allied telemetry experimental research [J]. Journal of Geophysical Research-Atmospheres, 2009,114(D22): 103.

[2]Li Xin, Liu Shaomin, Ma Mingguo, et al. HiWATER: An integrated remote sensing experiment on hydrological and ecological processes in the Heihe River Basin [J]. Advances in Earth Science, 2012, 27(5): 481-498.[李新, 刘绍民, 马明国,等. 黑河流域生态—水文过程综合遥感观测联合试验总体设计[J].地球科学进展, 2012, 27(5): 481-498.]

[3]Li Xin, Cheng Guodong, Wu Lizong. Digital Heihe River Basin. 1: An information infrastructure for the watershed science [J]. Advances in Earth Science, 2010, 25(3): 297-305.[李新, 程国栋, 吴立宗. 数字黑河的思考与实践1: 为流域科学服务的数字流域 [J]. 地球科学进展, 2010, 25(3): 297-305.]

[4]Li Xin, Cheng Guodong, Ma Mingguo, et al. Digital Heihe River Basin. 4: Watershed observing system [J]. Advances in Earth Science, 2010, 25(8): 866-876. [李新,程国栋,马明国,等. 数字黑河的思考与实践4: 流域观测系统 [J]. 地球科学进展, 2010, 25(8): 866-876.]

[5]Gong Peng. Progress in recent environmental applications of wireless sensor networks [J]. Journal of Remote Sensing, 2010, 14(2): 387-395.[宫鹏. 无线传感器网络技术环境应用进展 [J]. 遥感学报, 2010, 14(2): 387-395.]

[6]Luo Lihui, Zhang Yaonan. Application research of wireless sensor networks in glacial environment monitoring[J]. Journal of Glaciology and Geocryology, 2008, 30(6): 1 018-1 023.[罗立辉, 张耀南. 无线传感器网络在冰川环境监测中的应用研究[J]. 冰川冻土, 2008, 30(6): 1 018-1 023.]

[7]Zhu Wenping, Zhang Yaonan, Luo Lihui. Study and application of the wireless sensor network to eco-hydrology[J]. Journal of Glaciology and Geocryology, 2011, 33(3): 573-581.[朱文平, 张耀南, 罗立辉. 生态—水文中无线传感器网络应用研究[J]. 冰川冻土, 2011, 33(3): 573-581.]

[8]Gruijter J J D. Sampling for Natural Resource Monitoring[M]. Berlin, New York: Springer, 2006.

[9]Wang Jinfeng. Spatial Sampling and Statistical Inference[M]. Beijing: Science Press, 2009. [王劲峰. 空间抽样与统计推断[M]. 北京: 科学出版社,2009.]

[10]Brus D J, de Gruijter J J. Random sampling or geostatisticalmodelling? Choosing between design-based and model-based sampling strategies for soil (with discussion) [J]. Geoderma, 1997, 80(1/2): 1-44.

[11]vanGroenigen J W, Pieters G, Stein A. Optimizing spatial sampling for multivariate contamination in urban areas [J]. Environmetrics, 2000, 11(2): 227-244.

[12]Brus D J, Heuvelink G B M. Optimization of sample patterns for universal kriging of environmental variables[J].Geoderma, 2007, 138(1/2): 86-95.

[13]Hengl T, Rossiter D G,  Stein A. Soil sampling strategies for spatial prediction by correlation with auxiliary maps[J]. Australian Journal of Soil Research, 2003, 41(8): 1 403-1 422.

[14]Wang J F, Christakos G,  Hu M G. Modeling spatial means of surfaces with stratified nonhomogeneity [J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(12): 4 167-4 174.

[15]Jin Rui, Li Xin, Yan Baoping, et al. Introduction of eco-hydrological wireless sensor network in the Heihe River Basin[J]. Advances in Earth Science, 2012, 27(9):993-1 005.[晋锐,李新,阎保平,等. 黑河流域生态水文传感器网络设计[J]. 地球科学进展, 2012, 27(9):993-1 005.]

[16]Wan Z, Zhang Y, Zhang Q, et al. Quality assessment and validation of the MODIS global land surface temperature [J]. International Journal of Remote Sensing, 2004, 25(1): 261-274.

[17]Hengl T, Heuvelink G B M,  Rossiter D G. About regression-kriging: From equations to case studies [J]. Computers & Geosciences, 2007,33(10): 1 301-1 315.

[18]Hengl T, Heuvelink G B M, Stein A. A generic framework for spatial prediction of soil variables based on regression-kriging [J]. Geoderma, 2004, 120(1/2): 75-93.

[19]Zhang L J, Gove J H, Heath L S. Spatial residual analysis of six modeling techniques [J]. Ecological Modelling, 2005, 186(2): 154-177.

[20]Goovaerts P. Geostatistics for Natural Resources Evaluation [M]. New York: Oxford University Press, 1997.

[21]Christensen R. Linear Models for Multivariate, Time and Spatial Data [M]. New York: Springer, 1990.

[22]Gershenfeld N A. The Nature of Mathematical Modeling [M]. Cambridge:  Cambridge University Press, 1999.

[23]Baume O P, Gebhardt A, Gebhardt C, et al. Network optimization algorithms and scenarios in the context of automatic mapping [J]. Computers & Geosciences, 2011, 37(3): 289-294.

[24]Coello C A C, Pulido G T, Lechuga M S. Handling multiple objectives with particle swarm optimization [J]. IEEE Transactions on Evolutionary Computation, 2004, 8(3): 256-279.

[25]Heuvelink G B M, Jiang Z, De Bruin, et al. Optimization of mobile radioactivity monitoring networks [J]. International Journal of Geographical Information Science, 2010, 24(3): 365-382.

[26]Kirkpatrick S, Gelatt C D, Vecchi M P. Optimization by simulated annealing [J]. Science, 1983, 220(4 598): 671-680.

[27]vanGroenigen J W, Stein A. Constrained optimization of spatial sampling using continuous simulated annealing[J]. Journal of Environmental Quality, 1998, 27(5): 1 078-1 086.

[28]Melles S J, Heuvelink G B M, Twenhofel C J W, et al. Optimizing the spatial pattern of networks for monitoring radioactive releases[J]. Computers & Geosciences, 2011, 37(3): 280-288.

[29]Heuvelink G B M, Brus D J,   de Gruijter J J. Optimization of sample configurations for digital mapping of soil properties with universal kriging[C]∥Lagacherie A B M P, Voltz M, eds. Developments in Soil Science. Amsterdam: Elsevier, 2006: 137-151.

[1] 焦其顺,朱忠礼,刘绍民,晋锐,杜帆. 宇宙射线快中子法在农田土壤水分测量中的研究与应用[J]. 地球科学进展, 2013, 28(10): 1136-1143.
[2] 晋 锐,李 新,阎保平,罗万明,李秀红,郭建文,马明国,亢 健,张艳林. 黑河流域生态水文传感器网络设计[J]. 地球科学进展, 2012, 27(9): 993-1005.
[3] 李新,刘绍民,马明国,肖青,柳钦火,晋锐,车涛,王维真,祁元,李弘毅,朱高峰,郭建文,冉有华. 黑河流域生态—水文过程综合遥感观测联合试验总体设计[J]. 地球科学进展, 2012, 27(5): 481-498.
[4] 李新, 程国栋, 马明国, 肖青, 晋锐, 冉有华, 赵文智, 冯起, 陈仁升, 胡泽勇, 盖迎春. 数字黑河的思考与实践4:流域观测系统[J]. 地球科学进展, 2010, 25(8): 866-876.
阅读次数
全文


摘要