地球科学进展 ›› 2012, Vol. 27 ›› Issue (5): 481 -498. doi: 10.11867/j.issn.1001-8166.2012.05.0481

研究论文    下一篇

黑河流域生态—水文过程综合遥感观测联合试验总体设计
李新 1,刘绍民 2,马明国 1,肖青 3,柳钦火 3,晋锐 1,车涛 1,王维真 1,祁元 1,李弘毅 1,朱高峰 1,郭建文 1,冉有华 1,闻建光 3,王树果 1   
  1. 1.中国科学院寒区旱区环境与工程研究所,甘肃兰州730000;2.北京师范大学,北京100875;
    3.中国科学院遥感应用研究所 遥感科学国家重点实验室,北京100101
  • 收稿日期:2012-03-27 修回日期:2012-04-17 出版日期:2012-05-10
  • 通讯作者: 李新(1969-),男,甘肃酒泉人,研究员,主要从事陆面数据同化、遥感和GIS在冰冻圈和水文水资源研究中的应用、流域集成研究 E-mail:lixin@lzb.ac.cn
  • 基金资助:

    国家自然科学基金重大研究计划“黑河流域生态—水文过程集成研究”重点项目群“黑河流域生态—水文过程综合遥感观测试验”(编号:91125001,91125002,91125003,91125004);中国科学院西部行动计划三期项目“黑河流域生态—水文遥感产品生产算法研究与应用试验”资助.

HiWATER: An Integrated Remote Sensing Experiment on Hydrological and Ecological Processes in the Heihe River Basin

Li Xin 1, Liu Shaomin 2, Ma Mingguo 1, Xiao Qing 3, Liu Qinhuo 3, Jin Rui 1, Che Tao 1, Wang Weizhen 1, Qi Yuan 1, Li Hongyi 1, Zhu Gaofeng 1, Guo Jianwen 1, Ran Youhua 1, Wen Jianguang 3, Wang Shuguo 1   

  1. 1.Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou730000, China; 2. Beijing Normal University, Beijing 100875, China; 3. The State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing Applications, Chinese Academy of Sciences, Beijing100101, China
  • Received:2012-03-27 Revised:2012-04-17 Online:2012-05-10 Published:2012-05-10

介绍了“黑河流域生态—水文过程综合遥感观测联合试验”的背景、科学目标、试验组成和试验方案。试验的总体目标是显著提升对流域生态和水文过程的观测能力,建立国际领先的流域观测系统,提高遥感在流域生态—水文集成研究和水资源管理中的应用能力。由基础试验、专题试验、应用试验、产品与方法研究和信息系统组成。其中,①基础试验:搭载微波辐射计、成像光谱仪、热像仪、激光雷达等航空遥感设备,开展一系列关键生态和水文参量的观测;发展遥感正向模型及反演和估算方法。形成覆盖全流域的水文气象综合观测网,为流域生态—水文模型研究提供更有代表性的模型参数、驱动数据及更高精度的验证数据。构建无线传感器网络,度量生态水文模型所需的若干关键的驱动、参数和模型状态的空间异质性。开展航空遥感定标和地基遥感试验。依托传感器网络,并辅之以地面同步和加密观测,开展遥感产品真实性检验。②专题试验:开展“非均匀下垫面多尺度地表蒸散发观测试验”,采用密集的涡动相关仪、大孔径闪烁仪与自动气象站的观测矩阵,为揭示地表蒸散发的空间异质性,实现非均匀下垫面地表蒸散发的尺度扩展,发展和验证蒸散发模型提供基础数据。③应用试验:在流域上、中、下游分别开展针对积雪和冻土水文、灌溉水平衡和作物生长、生态耗水的综合观测试验,将观测数据和遥感产品用于上游分布式水文模型、中游地表水—地下水—农作物生长耦合模型、下游生态耗水模型,通过实证研究提升遥感在流域生态—水文集成研究和水资源管理中的应用能力。加强试验将在2012年5月起按中游、上游、下游的顺序展开,全流域持续观测期为2013—2015年。在各类试验的支持下,开展全流域生态—水文关键参量遥感产品生产,发展尺度转换方法,建立多源遥感数据同化系统。

This paper introduces the background, scientific objectives, experiment components and implementation plan of the Heihe Watershed Allied Telemetry Experimental Research (HiWATER). The overall objective of HiWATER is to improve the observability of hydrological and ecological processes, to build a worldclass river basin observing system, and to increase the applicability of remote sensing and other new generation observation techniques in ecohydrological studies and water resource management at basin scale. HiWATER encompasses fundamental experiments, thematic experiments, application experiments, remote sensing methods development and products generation, and an integrated information system.
(1) Fundamental experiments: ① Microwave radiometer, imaging spectrometer, thermal imaging camera, Light Detection and Ranging (LiDAR) and other sensors will be used in the airborne missions to observe key eco-hydrological parameters and at the meantime to develop and improve the remote sensing models and methods for the retrieval of those variables. ② To establish a comprehensive hydrometeorological observation network that will cover the entire Heihe River Basin, in order to provide more representative model parameters and forcing data, and more accurate ground truths. ③ An eco-hydrological Wireless Sensor Network (WSN) will be established to capture the spatial-temporal dynamics and variations of key forcing data, eco-hydrological parameters, and model state variables over heterogeneous land surfaces. ④ Airborne sensors calibration and ground-based remote sensing experiments will be conducted. Remote sensing products will be validated rest upon the WSN, in association with simultaneous in situ measurements and other intensive observations.
(2) Thematic experiments: A multiscale observation experiment on evapotranspiration will be performed over heterogeneous land surfaces. Eddy Covariance (EC) systems, Large Aperture Scintillometer (LAS), and Automatic Weather Stations (AWSs) will be intensively deployed to constitute an observing matrix to reveal the spatial heterogeneities of ET, to identify the scale effects and achieve scale transformation of ET over heterogeneous landscapes, and to provide elementary data sets for the development and validation of ET estimation models.
(3) Application experiments: Purposeful observation experiments will be performed in the upstream, middle stream, and downstream of the Hiehe River Basin, aiming at snow and frozen soil hydrology, water balance in irrigation management, and quantifying plant water consumption. Observed data sets and remote sensing products will be used in distributed hydrological model, coupled surface water-groundwater-crop growth model, and ecological water consumption model towards the areas of upstream, middle stream, and downstream. It is anticipated the applicability of remote sensing in integrated ecohydrological studies and water resource management can be enhanced by means of these empirical researches.
The intensive observations and field campaigns will be orderly undertaken in the middle stream, upstream, and downstream of the Heihe River Basin from May, 2012 to 2015. Dependent on various experiments, remote sensing products at basin scale for the key eco-hydrological variables will be created, scale transformation approaches will be explored, and a multi-source remote sensing data assimilation system will be eventually built.

中图分类号: 

[1]Li Xin, Ma Mingguo, Wang Jian, et al. Simultaneous remote sensing and ground-based experiment in the Heihe River Basin: Scientific objectives and experiment design [J]. Advances in Earth Science, 2008, 23(9): 897-914.[李新, 马明国, 王建, 等. 黑河流域遥感—地面观测同步试验:科学目标与试验方案[J]. 地球科学进展, 2008, 23(9): 897-914.]
[2]Li X, Li X W, Li Z Y, et al. Watershed allied telemetry experimental research [J]. Journal of Geophysical Research, 2009, 114:(D22103), doi:10.1029/2008JD011590.
[3]Cheng Guodong. Integrated Management of the Water-Ecology-Economy System in the Heihe River Basin [M]. Beijing: Science Press, 2009:581.[程国栋. 黑河流域水—生态—经济系统综合管理研究 [M]. 北京: 科学出版社, 2009:581.]
[4]Li Xin, Cheng Guodong. On the watershed observing and modeling systems [J]. Advances in Earth Science, 2008, 23(7): 756-764.[李新, 程国栋. 流域科学研究中的观测和模型系统建设 [J]. 地球科学进展, 2008, 23(7): 756-764.]
[5]Committee on U.S. Geological Survey, National Research Council. Watershed Research in the U.S. Geological Survey [M]. Washington, DC: National Academies Press, 1997:96.
[6]Committee on Watershed Management, National Research Council. New Strategies for America’s Watersheds [M]. Washington DC: National Academies Press, 1999:328.
[7]Committee on River Science at the U.S. Geological Survey, National Research Council. River Science at the U.S. Geological Survey [M].Washington, DC: National Academies Press, 2007:206.
[8]Li Xin, Cheng Guodong, Ma Mingguo, et al. Digital Heihe River Basin. 4: Watershed observing system [J]. Advances in Earth Science, 2010, 25(8): 866-876.[李新, 程国栋, 马明国, 等. 数字黑河的思考与实践4:流域观测系统 [J]. 地球科学进展, 2010, 25(8): 866-876.]
[9]Consortium of Universities for the Advancement of Hydrologic Science. Hydrology of a Dynamic Earth [R]. Consortium of Universities for the Advancement of Hydrologic Science, Inc., 2007.
[10]NRC: Committee on the Review of Water and Environmental Research Systems (WATERS) Network, National Research Council. Review of the WATERS Network Science Plan [M]. Washington DC: National Academies Press, 2010:88.
[11]Bogena H, Schulz K, Vereecken H. Towards a network of observatories in terrestrial environmental research [J]. Advances in Geosciences, 2006, 9: 109-114.
[12]Wigmosta M S, Vail L W, Lettenmaier D P. A distributed hydrology-vegetation model for complex terrain [J]. Water Resources Research, 1994, 30(6): 1 665-1 679.
[13]Arnold J G, Fohrer N. SWAT2000: Current capabilities and research opportunities in applied watershed modeling [J]. Hydrological Processes, 2005, 19(3): 563-572.
[14]Rigon R, Bertoldi G, Over T M. GEOtop: A distributed hydrological model with coupled water and energy budgets[J].Journal of Hydrometeorology, 2006, 7(3): 371-388.
[15]Harbaugh A W, Banta E R, Hill M C, et al. MODFlow-2000, The U.S. Geological Survey Modular Ground-Water Model-User Guide to Modularization Concepts and the Ground-Water Flow Process[R].CO: U.S. Geological Survey,Denver, 2000.
[16]Sitch S, Smith B, Prentice I C, et al. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model [J]. Global Change Biology, 2003, 9(2): 161-185.
[17]Thornton P E, Running S W. User’s Guide for Biome-BGC, Version 4.1.2[Z].USA, 2002.
[18]Vandiepen C A, Wolf J, Vankeulen H, et al. WOFOST—A simulation-model of crop production [J]. Soil Use and Management, 1989, 5(1): 16-24.
[19]Sellers P J, Randall D A, Collatz G J, et al. A revised land surface parameterization (SiB2) for atmospheric GCMs. Part I: Model formulation [J]. Journal of Climate, 1996, 9(4): 676-705.
[20]Dai Y, Zeng X, Dickinson R E, et al. The common land model [J]. Bulletin of American Meteorological Society, 2003, 84(8): 1 013-1 023.
[21]Oleson K W, Lawrence D M, Bonan G B, et al. Technical Description of Version 4.0 of the Community Land Model (CLM)[R]. NCAR/TN-478+STR, Boulder, CO: National Center for Atmospheric Research, 2010:257.
[22]Zhang Y L, Cheng G D, Li X, et al. Coupling the Simultaneous Heat and Water model (SHAW) with a distributed hydrological model and its evaluation of the combined model in a cold region watershed [J]. Hydrological Processes, 2012(submitted).
[23]Zhou J, Hu B X, Cheng G D, et al. Development of a three-dimensional watershed modelling system for water cycle in the middle part of the Heihe rivershed, in the west of China [J]. Hydrological Processes, 2011, 25(12): 1 964-1 978.
[24]Zhou J, Cheng G D, Li X, et al. Numerical modeling of wheat irrigation using coupled HYDRUS and WOFOST models [J]. Soil Science Society of America Journal,2012,76(2):648-662, doi:10.2136/sssaj2010.0467.
[25]Tian W, Li X, Wang X S, et al. Coupling a groundwater model with a land surface model to improve the water and energy cycle simulation [J]. Hydrology and Earth System Sciences, 2012(submitted).
[26]Pomeroy J W, Gray D M, Brown T, et al. The cold regions hydrological process representation and model: A platform for basing model structure on physical evidence [J]. Hydrological Processes, 2007, 21(19): 2 650-2 667.

[1] 邱国玉,张晓楠. 21世纪中国的城市化特点及其生态环境挑战[J]. 地球科学进展, 2019, 34(6): 640-649.
[2] 夏军, 左其亭, 韩春辉. 生态水文学学科体系及学科发展战略[J]. 地球科学进展, 2018, 33(7): 665-674.
[3] 刘鹄, 赵文智, 李中恺. 地下水依赖型生态系统生态水文研究进展[J]. 地球科学进展, 2018, 33(7): 741-750.
[4] 沈有信, 赵志猛, 毕胜春, 赵高卷, 刘娟. 陆地系统中的露石及其生态作用[J]. 地球科学进展, 2018, 33(4): 343-349.
[5] 马晋, 周纪, 刘绍民, 王钰佳. 卫星遥感地表温度的真实性检验研究进展[J]. 地球科学进展, 2017, 32(6): 615-629.
[6] 晋锐, 李新, 马明国, 葛咏, 刘绍民, 肖青, 闻建光, 赵凯, 辛晓平, 冉有华, 柳钦火, 张仁华. 陆地定量遥感产品的真实性检验关键技术与试验验证[J]. 地球科学进展, 2017, 32(6): 630-642.
[7] 何志斌, 杜军, 陈龙飞, 朱喜, 赵敏敏. 干旱区山地森林生态水文研究进展[J]. 地球科学进展, 2016, 31(10): 1078-1089.
[8] 吴胜标, 闻建光, 刘强, 窦宝成, 游冬琴. 黑河流域地表反照率估算及其时空特征分析[J]. 地球科学进展, 2015, 30(6): 680-690.
[9] 曹斌, 张廷军, 彭小清, 郑雷, 牟翠翠, 王庆峰. 黑河流域年冻融指数及其时空变化特征分析[J]. 地球科学进展, 2015, 30(3): 357-366.
[10] 熊喆. 不同积云对流参数化方案对黑河流域降水模拟的影响[J]. 地球科学进展, 2014, 29(5): 590-597.
[11] 盖迎春, 李新, 田伟, 张艳林, 王维真, 胡晓利. 黑河流域中游人工水循环系统在分水前后的变化[J]. 地球科学进展, 2014, 29(2): 285-294.
[12] 彭小清,张廷军,潘小多,王庆峰,钟歆钥,王康,牟翠翠. 祁连山区黑河流域季节冻土时空变化研究[J]. 地球科学进展, 2013, 28(4): 497-508.
[13] 冯起,苏永红,司建华,常宗强,席海洋,郭瑞,陈丽娟,霍红,秦燕燕. 黑河流域生态水文样带调查[J]. 地球科学进展, 2013, 28(2): 187-196.
[14] 焦其顺,朱忠礼,刘绍民,晋锐,杜帆. 宇宙射线快中子法在农田土壤水分测量中的研究与应用[J]. 地球科学进展, 2013, 28(10): 1136-1143.
[15] 颉耀文,王学强,汪桂生,余林. 基于网格化模型的黑河流域中游历史时期耕地分布模拟[J]. 地球科学进展, 2013, 28(1): 71-78.
阅读次数
全文


摘要