Please wait a minute...
img img
高级检索
地球科学进展  2012, Vol. 27 Issue (12): 1344-1352    DOI: 10.11867/j.issn.1001-8166.2012.12.1344
研究论文     
环境同位素特征对滨海岩溶地区海水入侵过程的指示意义
杨吉龙1,韩冬梅2*,苏小四3,肖国强1,赵长荣1,宋庆春4,汪娜5
1.天津地质矿产研究所,天津300170;2.中国科学院地理科学与资源研究所陆地水循环及地表过程重点实验室,北京100101;3.吉林大学环境与资源学院,吉林长春130021;4.辽宁水文地质工程地质勘察院,辽宁大连116037;5.河北省地矿局第二地质大队,河北唐山063000
Environmental Tracers (δ2H-δ18O, δ34S, δ13C) as Indicators of Seawater Intrusion Processes in the Coastal Karst Area
Yang Jilong1, Han Dongmei2, Su Xiaosi3, Xiao Guoqiang1,Zhao Changrong1, Song Qingchun4,  Wang Na5
1.Tianjin Institute of Geology and Mineral Resources, Tianjin300170, China; 
2.Key Laboratory of Water Cycle & Related Land Sarface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing100101, China;
3.College of Environment and Resources,Jilin University, Changchun130026, China;
4.Liaoning Investigation Insititute of Hydrogeology and Engineering Geology, Dalian116037, China;
5.No.2 Geological Brigade of Hebei Geology and Mineral Exploration Bureau, Tangshan063000, China
 全文: PDF(1685 KB)  
摘要:

大连大魏家水源地位于中国北方典型滨海岩溶地区。近30年来,地下淡水的不合理开采造成的地下水位降落漏斗引发了严重的海水入侵。以大魏家水源地为研究对象,通过大量的水文地质调查和水化学及同位素采样测试分析,探讨海水入侵形成的水动力条件,通过分析滨海岩溶含水层中地下水主要水化学和多种同位素(δ2H-δ18O,δ34S,δ13C)组成特征,识别了海水入侵过程中发生的主要水文地球化学作用,并对其进行了定量模拟,从而阐明了岩溶含水层中的海水入侵机理。研究结果表明:大连大魏家海水入侵主要通道为大魏家地区存在的导水断裂、岩溶裂隙以及第四系松散地层。对δ2H-δ18O同位素的组成分析表明,研究区地下水主要来自大气降水补给,结合Cl-浓度分布,认为除海水入侵淡水含水层后增加了地下水中的盐分外,浅层地下水的蒸发也对地下水中盐分的累积起到了重要作用。根据不同水体中δ34SSO4,δ13CHCO3等同位素特征,结合水化学成分(如SO2-4,Cl-)分析认为,研究区微咸水和咸水并不是地下水淡水和海水简单混合而成。利用反向水文地球化学模拟揭示了控制滨海岩溶含水层中水化学演化的主要水文地球化学反应有方解石、蒙脱石和石膏的溶解作用,伊利石的沉淀作用以及Ca-Na离子交换作用,伴随着CO2的释放。

关键词: 地下水滨海岩溶地区海水入侵稳定同位素水文地球化学    
Abstract:

Daweijia wellhead field is located at the coastal karst area in north China. Unsustainable groundwater exploitation in recent decades has resulted in severe seawater intrusion in this area. Employing hydrogeological investigations, hydrodynamic monitoring and hydrogeochemical and isotope data analysis, this study analyzed the groundwater hydrodynamic conditions partially controlling seawater intrusion processes, and delineated the mechanism of seawater intrusion in this area. The characteristics of major hydrochemical composition and multi-stable-isotopes (δ2H-δ18O, δ34S, δ13C) in groundwater have been used to identify the main hydrogeochemical behaviors; these were also quantitatively simulated by inverse hydrogeochemical reactions. Seawater intrusion occurs primarily along the permeable fault zone, karst fissures and loose Quaternary strata. The compositions of  δ18O and  δ2H in groundwater show that the critical groundwater recharge source is precipitation. Combined with the Cl- distribution, it can be identified that besides salinity increase accompanying seawater intrusion into fresh water aquifer, evaporation of shallow groundwater also plays an important role in the accumulation of salt in groundwater. Joint analysis of δ34SSO4, δ13CHCO3composition with special anions (e.g., SO2-4,Cl-) reveals that brackish and saline groundwater are not the results of a simple mixture between seawater and fresh groundwater. Inverse hydrogeochemical modeling can be used to reveal the main hydrogeochemical reactions controlling the hydrochemical evolution of coastal karst aquifers in the study area, including the dissolution of calcite, montmorillonite and gypsum, the precipitation of illite and Ca-Na cation exchange with CO2 extrication.

Key words: Dalian    Coastal karst area    Seawater intrusion    Stable isotopes    Hydrogeochemistry
收稿日期: 2012-03-20 出版日期: 2012-12-10
:  P614.2  
基金资助:

中国科学院地理科学与资源研究所“一三五”战略科技计划前沿探索项目“北方滨海岩溶地区海水入侵机理研究”(编号:2012QY007);中国地质调查局项目“天津滨海新区海岸带环境地质调查评价”(编号:1212010814004)资助.

通讯作者: 韩冬梅(1978-),女,新疆焉耆人,助理研究员,主要从事流域水循环与地下水水文过程研究.     E-mail: handm@igsnrr.ac.cn
作者简介: 杨吉龙(1980-),男,甘肃武威人,助理研究员,主要从事水文地质、工程地质研究.E-mail:jilong.y@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
杨吉龙
韩冬梅
苏小四
肖国强
赵长荣
宋庆春
汪娜

引用本文:

杨吉龙,韩冬梅,苏小四,肖国强,赵长荣,宋庆春,汪娜. 环境同位素特征对滨海岩溶地区海水入侵过程的指示意义[J]. 地球科学进展, 2012, 27(12): 1344-1352.

Yang Jilong, Han Dongmei, Su Xiaosi, Xiao Guoqiang,Zhao Changrong, Song Qingchun, Wang Na. Environmental Tracers (δ2H-δ18O, δ34S, δ13C) as Indicators of Seawater Intrusion Processes in the Coastal Karst Area. Advances in Earth Science, 2012, 27(12): 1344-1352.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2012.12.1344        http://www.adearth.ac.cn/CN/Y2012/V27/I12/1344

[1]Amer A M. Saltwater intrusion in coastal aquifers[J].Water Resources Management, 1995,( 2):521-529.



[2]Grassi S, Cortecci G, Squarci P. Groundwater resource degradation incoastal plains:The example of the Cecina area (Tuscany-Central Italy) [J].Applied Geochemistry, 2007, 22 (11):2 273-2 289.



[3]Han D M, Claus Kohfahl, Song Xianfang, et al.Geochemical and isotopic evidence for palaeo-seawater intrusion into the south coast aquifer of Laizhou Bay, China [J]. Applied Geochemistry , 2011, (26) :863-883.



[4]Sherif M M, Hamza K I. Mitigation of seawater intrusion by pumping brackish water[J]. Transport Porous Media, 2001,(43) :29-44.



[5]Yin Huaining, Zhang Dejun. Impact of seawater invasion on soil ecology of Daliang City [J].Research of Soil and Water Conservation, 2007, 14(3):5-6.[尹怀宁,张德君.大连市地下水海水污染对土壤生态影响研究初报[J].水土保持研究,2007,14(3):5-6.]



[6]Sheng Xuebin, Dai Zhaohua, Yang Minghua. Seawater intrusion status and prevention proposal for the Yellow Sea and Bohai Sea[J] .Acta Ecologica Sinica,1996,16(4):418-426.[盛学斌,戴昭华, 杨明华. 大渤海区海水入侵态势与防治构想[J].生态学报, 1996,16(4):418-426.]



[7]Wu Qiang, Jin Yujie,Li Dean, et al. The mechanisms of seawater intrusion of karst groud water system in Daweijia, Dalian City and the countermeasures of its control [J]. The Chinese Journal of Geological Hazard and Control,1994,5(1):64-68. [武强, 金玉洁, 李德安, 等.大连大魏家岩溶地下水系统海水入侵机理与对策[J].中国地质灾害与防治学报,1994,5(1):64-68.]



[8]Zou Shengzhang, Zhu Yuanfeng, Chen Honghan, et al .Chemistry process of seawater intrusion in littoral karst area of Daweijia, Daliang City[J]. Marine Geology and Quaternary Geology,2004,24(1):61-67. [邹胜章,朱远峰,陈鸿汉,等.大连大魏家滨海岩溶区海水入侵化学过程[J].海洋地质与第四纪地质,2004,24(1):61-67.]



[9]Xiao Guoqiang,Wang Hong,Zhao Changrong, et al.Assessment of Vulnerability and Investigation of Environmental Geology in the Key Section of Circum-Bohai-Sea Region[R]. Tianjin: Tianjin Institute of Geology and Mineral Resources,2007.[肖国强,王宏,赵长荣,等.环渤海地区重点地段环境地质调查及脆弱性评价报告[R].天津:天津地质矿产研究所,2007.]



[10]Shen Zhaoli, Zhu Wanhua, Zhong Zuoshen. Fundamentals of Hydrogeology[M].Beijing:Geological Publishing House, 1993.[沈照理,朱婉华,钟佐燊.水文地球化学基础[M]. 北京:地质出版社,1993.]



[11]Xue Y Q, Wu J C, Ye S J, et al. Hydrogeological and hydrogeochemicalstudies for salt water intrusion on the South Coast of Laizhou Bay [J]. China Ground Water ,2000,38:38-45.



[12]Zakhem B A, Hafez R. Environmental isotope study of seawater intrusion in the coastal aquifer (Syria)[J].Environmental Geology ,2007, 51:1 329-1 339.



[13]Bear J, Cheng A H D, Sorek S, et al. Seawater Intrusion in Coastal Aquifers-Concepts, Methods and Practices[M]. Netherlands :Kluwer Academic, 1999.



[14]Hoefs J. Stable Isotope Geochemistry (5th edition)[M].Berlin:Spinger-Verlag, 2004.



[15]Clark I, Fritz P. Environmental Isotopesin Hydrogeology[M].Springer ,1997.



[16]IAEA/WMO. Global Network of Isotopes in Precipitation. The GNIP Database (http:∥www.naweb.iaea.org/napc/ih/IHS_resources_gnip.html)[DB].Vienna, 2006.



[17]Rees C E,Jenkins W J, Monster J. The sulphur isotopic composition of ocean water sulfate[J]. Geochimica et  Cosmochimica Acta, 1978, 42:377-381.



[18]Xiao Huayun, Liu Congqiang, Li Siliang. Geochemical characteristics of sulfur and nitrogen isotopic compositions in rains of Guiyang in summer[J].Geochimica, 2003, 32(3):248-254. [肖化云,刘丛强,李思亮.贵阳地区夏季雨水硫和氮同位素地球化学特征[J].地球化学,2003,32(3):248-254. ]



[19]Shi Z S, Chen K Y, Shi J, et al. Sulfur isotopic composition and its geological significance of the paleogene sulfate rock deposited in Dongpu Depression[J]. Petroleum Exploration and Develop, 2004,31 (6): 44-46.



[20]Dotsika E, Leontiadis I, Poutoukis D, et al. Fluid geochemistry of the Chios geothermal area, Chios Island, Greece[J]. Journal Volcanology Geothermal Research, 2006,154(3/4):237-250.



[21]Lang Yunchao, Liu Congqiang, Satake H. δ37Cl and δ34S variations of Cl- and SO2-4 in groundwater and surface water of Guiyang Area, China[J]. Advances in Earth Science, 2008, 23(2):152-159.[朗赟超,刘丛强,Satake H. 贵阳地表水—地下水的硫和氯同位素组成特征及其污染物示踪意义[J].地球科学进展,2008,23(2):152-159. ] 



[22]Appelo C A J,Postma D. Geochemistry,Groundwater and Pollution[M]. Rotterdam: A. A. Balkema,1993.



[23]Levin I, Kromer B, Wngenbach D, et al. Carbon isotope measurements of atmospheric CO2 at a coastal station in Antarctica[J].Tellus, 1987, 39B(1/2):89-95.



[24]Tao Zhen, Shen Chengde, Yi Weixi, et al. Progresses in the study of carbon isotopes tracing of the soil carbon dynamics[J].Advances in Earth Science, 2004, 19(5):793-800.[陶贞,沈承德,易惟熙, 等.土壤动力学同位素示踪研究进展[J].地球科学进展,2004,19(5):793-800.]



[25]Chen Jinshi, Chen Zhengwen. Carbon Isotope Geology Conspectus[M].Beijing:Geology Publishing House, 1983.[陈锦石,陈正文.碳同位素地质学概论[M].北京:地质出版社,1983.]



[26]Amiotte-Suchet P, Aubert D, Probst J L, et al.δ13C pattern of dissolved,inorganic carbon in a small granitic catchment: The strengbachease study(Vosges mountains, France)[J].Chemical Geology, 1999, 159(1/4): 129-145.



[27]Telmer K, Veizer J. Carbon fluxes, pCO2 and substrate,weathering in a large northern river basin, Canada: Carbon isotopes perspectives[J].Chemical Geology, 1999, 159(1/4):61-86.



[28]Palmer S M, Hope D, Billett M F, et al. Sources of organic and inorgan ic carbon in a headwater stream:Evidences from carbon isotopic studies[J]. Biogechemistry, 2001, 52(3):321-338.



[29]Plummer L N, Prestemon E C, Parkhurst D L. An Interactive code(NETPATH)for Modeling Net Geochemical Reactions Along A Flow Path[M].U.S.Geological Survey,1994.

[1] 王学界, 章新平, 张婉君, 张新主, 罗紫东. 全球降水中氢氧稳定同位素GCM模拟空间分布的比较[J]. 地球科学进展, 2017, 32(9): 983-995.
[2] 赵文智, 周宏, 刘鹄. 干旱区包气带土壤水分运移及其对地下水补给研究进展[J]. 地球科学进展, 2017, 32(9): 908-918.
[3] 谷洪彪, 迟宝明, 王贺, 张耀文, 王明远. 柳江盆地地表水与地下水转化关系的氢氧稳定同位素和水化学证据[J]. 地球科学进展, 2017, 32(8): 789-799.
[4] 刘轶男, 孙凤霞, 崔月菊, 盘晓东, 马铭志, 张昕, 杜建国. 吉林省松原地区地震监测台站水化学特征[J]. 地球科学进展, 2017, 32(8): 810-817.
[5] 牛耀龄, 龚红梅, 王晓红, 肖媛媛, 郭鹏远, 邵凤丽, 孙普, 陈硕, 段梦, 孔娟娟, 王国栋, 薛琦琪, 高雅洁, 洪迪. 用非传统稳定同位素探索全球大洋玄武岩、深海橄榄岩成因和地球动力学的几个重要问题[J]. 地球科学进展, 2017, 32(2): 111-127.
[6] 刘菲, 陈亮, 王广才, 陈鸿汉. 地下水渗透反应格栅技术发展综述[J]. 地球科学进展, 2015, 30(8): 863-877.
[7] 李海龙, 王学静. 海底地下水排泄研究回顾与进展[J]. 地球科学进展, 2015, 30(6): 636-646.
[8] 张乾柱, 陶贞, 高全洲, 马赞文. 河流溶解硅的生物地球化学循环研究综述[J]. 地球科学进展, 2015, 30(1): 50-59.
[9] 刘花台, 郭占荣. 海底地下水排泄的研究进展[J]. 地球科学进展, 2014, 29(7): 774-785.
[10] 罗维均, 王世杰, 刘秀明. 喀斯特洞穴系统碳循环的烟囱效应研究现状及展望*[J]. 地球科学进展, 2014, 29(12): 1333-1340.
[11] 胡玥, 刘传琨, 卢粤晗, 刘杰, 郑春苗. 环境同位素在黑河流域水循环研究中的应用[J]. 地球科学进展, 2014, 29(10): 1158-1166.
[12] 洪义国. 硝酸盐氮氧稳定同位素分馏过程记录的海洋氮循环研究进展[J]. 地球科学进展, 2013, 28(7): 751-764.
[13] 刘志彬,方伟,陈志龙. 饱和带地下水曝气修复技术研究进展[J]. 地球科学进展, 2013, 28(10): 1154-1159.
[14] 贾永锋,郭华明. 高砷地下水研究的热点及发展趋势[J]. 地球科学进展, 2013, 28(1): 51-61.
[15] 祁晓凡,杨丽芝,韩 晔,尚 浩,邢立亭. 济南泉域地下水位动态及其对降水响应的交叉小波分析[J]. 地球科学进展, 2012, 27(9): 969-978.