[1] Qiu J. China faces up to groundwater crisis[J]. Nature News, 2010,466(7 304): 308. [2] Wen Dongguang, Lin Liangjun, Sun Jichao, et al. Groundwater quality and contamination assessment in the main plains of estern China[J]. Earth Science—Journal of China University of Geosciences, 2012, 37(2): 220-228.[文冬光, 林良俊, 孙继朝, 等. 中国东部主要平原地下水质量与污染评价[J]. 地球科学——中国地质大学学报, 2012, 37(2): 220-228.] [3] Bi E, Liu Y, He J, et al. Screening of emerging volatile organic contaminants in shallow groundwater in east China[J]. Groundwater Monitoring & Remediation, 2012, 32(1):53-58. [4] Zhang Zhaoji, Fei Yuhong, Guo Chunyan, et al. Regional groundwater contamination assessment in the north China plain[J]. Journal of Jilin University(Earth Science Edition), 2012, 42(5): 1 456-1 461.[张兆吉, 费宇红, 郭春艳, 等. 华北平原区域地下水污染评价[J]. 吉林大学学报:地球科学版, 2012, 42(5): 1 456-1 461.] [5] Chen L, Jin S, Liu Y L, et al. Presence of semi-volatile organic contaminants in shallow groundwater of selected regions in China[J]. Groundwater Monitoring & Remediation, 2014, 34(4): 33-43. [6] U.S. EPA. Field Applications of In-Situ Remediation Technologies: Permeable Reactive Barriers[R/OL]. Washington DC:U.S. Environmental Protection Agency Office of Solid Waste and Emergency Response Technology Innovation Office,2002. http:∥www.clu-in.info/download/rtdf/fieldapp_prb.pdf. [7] Powell R M, Puls R W, Blowes D W, et al. Permeable Reactive Barrier Technologies for Contaminant Remediation. Office of Research and Development, Office of Solid Waste and Emergency Response[R/OL]. Washington DC: U.S. EPA, 1998. https:∥clu-in.org/download/rtdf/prb/reactbar.pdf. [8] Interstate Technology and Regulatory Council (ITRC). Permeable Reactive Barriers: Lessons Learned/New Directions. PRB-4. Permeable Reactive Barriers Team[R/OL]. Washington DC, 2005. https:∥www.itrcweb.org. [9] Archer W L, Harter M K. Reactivity of carbon tetrachloride with a series of metals[J]. Corrosion, 1978, 34(5): 159-162. [10] Archer W L. Aluminum-1, 1, 1-trichloroethane. Reactions and inhibition[J]. Industrial & Engineering Chemistry Product Research and Development, 1982, 21(4): 670-672. [11] Sweeny K H, Fischer J R. Reductive degradation of halogenated pesticides[P].U.S. Patent 3,640,821. 1972-2-8. [12] Reynolds G W, Hoff J T, Gillham R W. Sampling bias caused by materials used to monitor halocarbons in groundwater[J]. Environmental Science & Technology, 1990, 24(1): 135-142. [13] Gillham R W, O’Hannesin S F. Enhanced degradation of halogenated aliphatics by zerovalent iron[J]. Ground Water, 1994, 32(6): 958-967. [14] O’Hannesin S F, Gillham R W. Long-term performance of an in situ “iron wall” for remediation of VOCs[J]. Ground Water, 1998, 36(1): 164-170. [15] Warner S D, Longino B L, Zhang M, et al. The first commercial permeable reactive barrier composed of granular iron: Hydraulic and chemical performance at 10 years of operation[J]. IAHS Publication, 2005, 298: 32. [16] Gillham R W, Vogan J, Gui L, et al. Iron barrier walls for chlorinated solvent remediation[M]∥Stroo H, Ward C H, eds. Situ Remediation of Chlorinated Solvent Plumes. New York: Springer-Verlag, 2010: 537-571. [17] Chen L, Liu F, Liu Y, et al. Benzene and toluene biodegradation down gradient of a zero-valent iron permeable reactive barrier[J]. Journal of Hazardous Materials, 2011, 188(1): 110-115. [18] Obiri-Nyarko F, Grajales-Mesa S J, Malina G. An overview of permeable reactive barriers for in situ sustainable groundwater remediation[J]. Chemosphere, 2014, 111: 243-259. [19] Odziemkowski M S, Gillham R W, Focht R. Electroless hydrogenation of trichloroethylene by Fe-Ni (P) galvanic couples[J]. Environmental Issues in the Electronics/Semiconductor Industries and Electrochemical/Photochemical Methods for Pollution Abatement, 1998, 98: 91-102. [20] Thiruvenkatachari R, Vigneswaran S, Naidu R. Review: Permeable reactive barrier for groundwater remediation[J]. Journal of Industrial and Engineering Chemistry, 2008, 14(2): 145-156. [21] Wang C B, Zhang W X. Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs[J]. Environmental Science & Technology, 1997, 31(7): 2 154-2 156. [22] Careghini A, Saponaro S, Sezenna E. Biobarriers for groundwater treatment: A review[J]. Water Science & Technology, 2012, 67(3): 453-468. [23] Ritter K, Odziemkowski M S, Simpgraga R, et al. An in situ study of the effect of nitrate on the reduction of trichloroethylene by granular iron[J]. Journal of Contaminant Hydrology, 2003, 65(1): 121-136. [24] Noubactep C. The fundamental mechanism of aqueous contaminant removal by metallic iron[J]. Water SA, 2010,36(5): 663-670. [25] Phillips D H, Nooten T V, Bastiaens L, et al. Ten year performance evaluation of a field-scale zero-valent iron permeable reactive barrier installed to remediate trichloroethene contaminated groundwater[J]. Environmental Science & Technology, 2010, 44(10): 3 861-3 869. [26] Wilkin R T, Acree S D, Ross R R, et al. Fifteen-year assessment of a permeable reactive barrier for treatment of chromate and trichloroethylene in groundwater[J]. Science of the Total Environment, 2014, 468: 186-194. [27] Farrell J, Kason M, Melitas N, et al. Investigation of the long-term performance of zero-valent iron for reductive dechlorination of trichloroethylene[J]. Environmental Science and Technology, 2000, 34(3): 514-521. [28] Liu Fei. Study on Volatile Chlorinated Hydrocarbons in Groundwater Using the Permeable Reactive Barrier of Zero Valence Iron[D]. Beijing: China University of Geosciences, 2002.[刘菲. 处理地下水中挥发性氯代脂肪烃的零价铁渗透反应格栅研究[D]. 北京:中国地质大学(北京), 2002.] [29] Burris D R, Allen-King R M, Manoranjan V S, et al. Chlorinated ethene reduction by cast iron: Sorption and mass transfer[J]. Journal of Environmental Engineering, 1998, 124(10): 1 012-1 019. [30] Agrawal A, Tratnyek P G. Reduction of nitro-aromatic compounds by zero-valent iron metal[J]. Environmental Science & Technology, 1995, 30(1): 153-160. [31] Matheson L J, Tratnyek P G. Reductive dehalogenation of chlorinated methanes by iron metal[J]. Environmental Science & Technology, 1994, 28(12): 2 045-2 053. [32] Su C, Puls R W. Kinetics of trichloroethylene reduction by zerovalent iron and tin: Pretreatment effect, apparent activation energy, and intermediate products[J]. Environmental Science & Technology, 1999, 33: 163-168. [33] Geiger C L, Ruiz N E, Clausen C A, et al. Ultrasound pretreatment of elemental iron: Kinetic studies of dehalogenation reaction enhancement and surface effects[J]. Water Research, 2002, 36 (5): 1 342-1 350. [34] Lin C J, Lo S L. Effects of iron surface pretreatment on sorption and reduction kinetics of trichloroethylene in a closed batch system[J]. Water Research, 2005, 39(6): 1 037-1 046. [35] Ruiz N, Seal S, Reinhart D. Surface chemical reactivity in selected zero-valent iron samples used in groundwater remediation[J]. Journal of Hazardous Materials, 2000, B80: 107-117. [36] Támara M L, Butler E C. Effects of iron purity and groundwater characteristics on rates and products in the degradation of carbon tetrachloride by iron metal[J]. Environmental Science & Technology, 2004, 38(6): 1 866-1 876. [37] Parbs A, Ebert M, Dahmke A. Long-term effects of dissolved carbonate species on the degradation of trichloroethylene by zerovalent iron[J]. Environmental Science & Technology, 2007, 41(1): 291-296. [38] Vikesland P J, Klausen J, Zimmermann H, et al. Longevity of granular iron in groundwater treatment processes: Changes in solute transport properties over time[J]. Journal of Contaminant Hydrology, 2003, 64(1): 3-33. [39] Chen J L, Al-Abed S R, Ryan A, et al. Effects of pH on dechlorination of trichloroethylene by zero-valent iron[J]. Journal of Hazardous Materials, 2001, 83(3): 243-254. [40] Deng B, Burris D R, Campbell T J. Reduction of vinyl chloride in metallic iron-water systems[J]. Environmental Science & Technology, 1999, 33(15): 2 651-2 656. [41] Gotpagar J, Grulke E, Tsang T, et al. Reductive dehalogenation of trichloroethylene using zero valent iron[J]. Environmental Progress, 1997, 16(2): 137-143. [42] Kenneke J F, Mccutcheon S C. Use of pretreatment zones and zero-valent iron for the remediation of chloroalkenes in an oxic aquifer[J]. Environmental Science & Technology, 2003, 37 (12): 2 829-2 835. [43] Thangavadivel K, Wang W H, Birke V, et al. A comparative study of Trichloroethylene (TCE) degradation in contaminated Groundwater (GW) and TCE-Spiked deionised water using Zero Valent Iron (ZVI) under various mass transport Conditions[J]. Water, Air, and Soil Pollution, 2013, 224(12): 1-9. [44] Lu Q, Gui L, Gillham R W. Effects of nitrate on trichloroethylene degradation by granular iron[J]. Earth Science Frontiers, 2005, 12(Suppl.1): 176-183.[Lu Q, Gui L, Gillham R W. 硝酸根对颗粒状铁降解三氯乙烯的影响[J]. 地学前缘, 2005, 12(增刊1): 176-183.] [45] Luo H P, Jin S, Fallgren P H, et al. Prevention of iron passivation and enhancement of nitrate reduction by electron supplementation[J]. Chemical Engineering Journal, 2010, 160 (1):185-189. [46] Weber A, Ruhl A S, Amos R T. Investigating dominant processes in ZVI permeable reactive barriers using reactive transport modeling[J]. Journal of Contaminant Hydrology, 2013, 151: 68-82. [47] Liu Yulong. Studies on Removal of Mixed Plume Formed by Benzene, Toluene and Chlorinated Ethylenes in Groundwater[D]. Beijing: China University of Geosciences, 2010.[刘玉龙. 去除地下水中苯、甲苯和氯代乙烯烃混合污染羽的实验研究[D]. 北京: 中国地质大学(北京),2010. ] [48] Reardon E J. Anaerobic corrosion of granular iron: Measurement and interpretation of hydrogen evolution rates[J]. Environmental Science & Technology, 1995, 29(12): 2 936-2 945. [49] Johnson T L, Fish W, Gorby Y A, et al. Degradation of carbon tetrachloride by iron metal: Complexation effects on the oxide surface[J]. Journal of Contaminant Hydrology, 1998, 29(4): 379-398. [50] Lipczynska-Kochany E, Harms S, Milburn R, et al. Degradation of carbon tetrachloride in the presence of iron and sulphur containing compounds[J]. Chemosphere, 1994, 29(7): 1 477-1 489. [51] Deng B, Hu S, Burris D R. Effect of Iron Corrosion Inhibitors on Trichloroethylene Reduction[M]. Columbus: Battelle Press, 1998. [52] Kohn T, Lynn Roberts A. The effect of silica on the degradation of organohalides in granular iron columns[J]. Journal of Contaminant Hydrology, 2006, 83(1): 70-88. [53] Li Z, Willms C, Alley J, et al. A shift in pathway of iron-mediated perchloroethylene reduction in the presence of sorbed surfactant—A column study[J]. Water Research, 2006, 40(20): 3 811-3 819. [54] Dries J, Bastiaens L, Springael D, et al. Competition for sorption and degradation of chlorinated ethenes in batch zero-valent iron systems[J]. Environmental Science & Technology, 2004, 38(10): 2 879-2 884. [55] Clark C J, Raob P S C, Annable M D. Degradation of perchloroethylene in cosolvent solutions by zero-valent iron[J]. Journal of Hazardous Materials, 2003, 96(1): 65-78. [56] Chen Liang. Microbial Passivation Analysis and Electrochemical Depassivation of Iron in ZVI PRB[D]. Beijing: China University of Geosciences, 2012.[陈亮. 零价铁渗透反应格栅中铁的微生物钝化效应及电活化技术[D].北京:中国地质大学(北京), 2012.] [57] van Nooten T, Lieben F, Dries J, et al. Impact of microbial activities on the mineralogy and performance of column-scale permeable reactive iron barriers operated under two different redox conditions[J].Environmental Science & Technology, 2007, 41(16): 5 724-5 730. [58] Muchitsch N, Van Nooten T, Bastiaens L,et al. Integrated evaluation of the performance of a more than seven year old permeable reactive barrier at a site contaminated with Chlorinated Aliphatic Hydrocarbons (CAHs)[J]. Journal of Contaminant Hydrology, 2011, 126(3): 258-270. [59] Wilkin R T, Puls R W, Sewell G W. Long-term performance of permeable reactive barriers using zero-valent iron: Geochemical and microbiological effects[J]. Ground Water, 2003, 41(4): 493-503. [60] Johnson R L, Thoms R B, Johnson R O, et al. Mineral precipitation upgradient from a zero-valent iron permeable reactive barrier[J]. Ground Water Monitoring and Remediation, 2008, 28(3): 56-64. [61] Chen L, Jin S, Fallgren P H, et al. Passivation of ZVI by denitrifying bacteria and the impact on trichloroethene reduction in groundwater[J]. Water Science & Technology, 2013, 67(6): 1 254-1 259. [62] Blowes D W, Ptacek C J, Benner S G, et al. Treatment of inorganic contaminants using permeable reactive barriers[J]. Journal of Contaminant Hydrology, 2000, 45(1): 123-137. [63] Bilardi S, Amos R T, Blowes D W, et al. Reactive transport modeling of ZVI column experiments for nickel remediation[J]. Groundwater Monitoring & Remediation, 2013, 33(1): 97-104. [64] Su C, Puls R W. Arsenate and arsenite removal by zero valent iron: Kinetics, redox transformation, and implications for in situ groundwater remediation[J]. Environmental Science & Technology, 2001, 35(7): 1 487-1 492. [65] Su C, Puls R W. Significance of iron(II, III) hydroxycarbonate green rust in arsenic remediation using zero valent iron in laboratory column tests[J]. Environmental Science & Technology, 2004, 38(19): 5 224-5 231. [66] Wilkin R T, McNeil M S. Laboratory evaluation of zero-valent iron to treat water impacted by acid mine drainage[J]. Chemosphere, 2013, 53(7): 715-725. [67] Sun H, Wang L, Zhang R, et al. Treatment of groundwater polluted by arsenic compounds by zero valent iron[J]. Journal of Hazardous Materials, 2006, 129(1/3): 297-303. [68] Yang J E, Kim J S, Ok Y S, et al. Mechanistic evidence and efficiency of the Cr(VI) reduction in water by different sources of zerovalent irons[J]. Water Science & Technology,2007, 55(1/2): 197-202. [69] Li X Q, Zhang W X. Sequestration of metal cations with zerovalent iron nanoparticles a study with high resolution X-ray photoelectron spectroscopy (HR-XPS)[J]. The Journal of Physical Chemistry C, 2007, 111(19): 6 939-6 946. [70] Ludwig R D, Smyth D J A, Blowes D W, et al. Treatment of arsenic, heavy metals, and acidity using a mixed ZVI-compost PRB[J]. Environmental Science & Technology, 2009, 43 (6): 1 970-1 976. [71] Cheng I F, Muftikian R, Fernando Q, et al. Reduction of nitrate to ammonia by zero-valent iron[J]. Chemosphere, 1997, 35(11): 2 689-2 695. [72] Liao C H, Kang S F, Hsu Y W. Zero-valent iron reduction of nitrate in the presence of ultraviolet light, organic matter and hydrogen peroxide[J]. Water Research, 2003, 37(17): 4 109-4 118. [73] Suzuki T, Moribe M, Oyama Y, et al. Mechanism of nitrate reduction by zero-valent iron: Equilibrium and kinetics studies[J]. Chemical Engineering Journal, 2012, 183: 271-277. [74] Bhatnagar A, Sillanp M. A review of emerging adsorbents for nitrate removal from water[J]. Chemical Engineering Journal, 2011, 168(2): 493-504. [75] Gandhi S, Oh B T, Schnoor J L, et al. Degradation of TCE, Cr (VI), sulfate, and nitrate mixtures by granular iron in flow-through columns under different microbial conditions[J]. Water Research, 2002, 36(8): 1 973-1 982. [76] Van Nooten T, Springael D, Bastiaens L. Microbial community characterization in a pilot-scale permeable reactive iron barrier[J]. Environmental Engineering Science, 2010, 27(3): 287-292. [77] Jeen S W, Gillham R W, Przepiora A. Predictions of long-term performance of granular iron permeable reactive barriers: Field-scale evaluation[J]. Journal of Contaminant Hydrology, 2011, 123(1): 50-64. [78] Yin W, Wu J, Li P, et al. Experimental study of zero-valent iron induced nitrobenzene reduction in groundwater: The effects of pH, iron dosage, oxygen and common dissolved anions[J]. Chemical Engineering Journal, 2012, 184: 198-204. [79] Fu F, Dionysiou D D, Liu H. The use of zero-valent iron for groundwater remediation and wastewater treatment: A review[J]. Journal of Hazardous Materials, 2014, 267: 194-205. [80] Yin W, Wu J, Huang W, et al. Enhanced nitrobenzene removal and column longevity by coupled abiotic and biotic processes in zero-valent iron column[J]. Chemical Engineering Journal, 2015, 259: 417-423. [81] Epolito W J, Yang H, Bottomley L A, et al. Kinetics of zero-valent iron reductive transformation of the anthraquinone dye reactive blue 4[J]. Journal of Hazardous Materials, 2008, 160(2): 594-600. [82] Scherer M M, Richter S, Valentine R L, et al. Chemistry and microbiology of permeable reactive barriers for in situ groundwater clean up[J]. Critical Reviews in Microbiology, 2000, 26(4): 221-264. [83] Arora M, Snape I, Stevens G W. The effect of temperature on toluene sorption by granular activated carbon and its use in permeable reactive barriers in cold regions[J]. Cold Regions Science and Technology, 2011, 66(1): 12-16. [84] Morris E A, Kirk D W, Jia C Q, et al. Roles of sulfuric acid in elemental mercury removal by activated carbon and sulfur-impregnated activated carbon[J]. Environmental Science & Technology, 2012, 46(14): 7 905-7 912. [85] Bortone I, Di Nardo A, Di Natale M, et al. Remediation of an aquifer polluted with dissolved tetrachloroethylene by an array of wells filled with activated carbon[J]. Journal of Hazardous Materials, 2013, 260: 914-920. [86] Vignola R, Bagatin R, De Folly D’Auris A, et al. Zeolites in a Permeable Reactive Barrier (PRB): One year of field experience in a refinery groundwater—Part 1: The performances[J]. Chemical Engineering Journal, 2011, 178: 204-209. [87] Vignola R, Bagatin R, De Folly D’Auris A, et al. Zeolites in a Permeable Reactive Barrier (PRB): One-year of field experience in a refinery groundwater. Part 2: Zeolite characterization[J]. Chemical Engineering Journal, 2011, 178: 210-216. [88] Hou G, Liu F, Liu M, et al. Performance of a permeable reactive barrier for in situ removal of ammonium in groundwater[J]. Water Science & Technology: Water Supply, 2014, 14(4): 585-592. [89] Li S, Huang G, Kong X, et al. Ammonium removal from groundwater using a zeolite permeable reactive barrier: A pilot-scale demonstration[J]. Water Science & Technology, 2014, 70(9): 1 540-1 547. [90] Misaelides P. Application of natural zeolites in environmental remediation: A short review[J]. Microporous and Mesoporous Materials, 2011, 144(1): 15-18. [91] Farhadian M, Vachelard C, Duchez D, et al. In situ bioremediation of monoaromatic pollutants in groundwater: A review[J]. Bioresource Technology, 2008, 99(13): 5 296-5 308. [92] Johnson D B, Hallberg K B. Acid mine drainage remediation options: A review[J]. Science of the Total Environment, 2005, 338(1): 3-14. [93] Benner S G, Blowes D W, Ptacek C J, et al. Rates of sulfate reduction and metal sulfide precipitation in a permeable reactive barrier[J]. Applied Geochemistry, 2002, 17(3): 301-320. [94] Robertson W D, Vogan J L, Lombardo P S. Nitrate removal rates in a 15-year-old permeable reactive barrier treating septic system nitrate[J]. Groundwater Monitoring and Remediation, 2008, 28(3): 65-72. [95] Lojkasek-Lima P, Aravena R, Shouakar-Stash O, et al. Evaluating TCE abiotic and biotic degradation pathways in a permeable reactive barrier using compound specific isotope analysis[J]. Groundwater Monitoring and Remediation, 2012, 32(4): 53-62. [96] Xin B P, Wu C H, Wu C H, et al. Bioaugmented remediation of high concentration BTEX-contaminated groundwater by permeable reactive barrier with immobilized bead[J].Journal of Hazardous Materials, 2013, 244:765-772. [97] Xie Li, Liu Fei, Liu Yulong. Improving property of filler in oxygen-releasing permeable reactive barrier[J]. Environmental Science & Technology, 2010, 33(2): 44-48.[谢李, 刘菲, 刘玉龙. 释氧渗透反应格栅填料的改进研究[J]. 环境科学与技术, 2010, 33(2): 44-48.] [98] Kong Xiangke, Ma Jianfei, Yang Yingzhao, et al. Laboratory column study for evaluating a bio-chemical permeable reactive barrier to remove ammonium from groundwater[J]. Environmental Science & Technology, 2012, 35(12): 1-5.[孔祥科, 马剑飞, 杨应钊, 等. 渗透反应格栅去除地下水中铵的化学生物联合柱研究[J]. 环境科学与技术, 2012, 35(12): 1-5.] [99] Kong Xiangke, Zhang Ying, Bi Erping. Optimization of oxygen-releasing materials and pH regulation in groundwater remediation system[J]. Chinese Journal of Environmental Engineering, 2012, 6 (9): 2 935-2 940.[孔祥科, 张英, 毕二平. 地下水修复系统中释氧材料的改进及 pH 调控[J]. 环境工程学报, 2012, 6 (9): 2 935-2 940.] [100] Yang Yingzhao, Liu Fei, Kong Xiangke, et al. Transformation and existing from of ammonia-N in a multi-media permeable reactive barrier[J]. Chinese Journal of Environmental Engineering, 2013, 7 (8): 2 931-2 936.[杨应钊, 刘菲, 孔祥科, 等. 多介质渗透反应格栅中氨氮的转化与存在形态[J]. 环境工程学报, 2013, 7(8): 2 931-2 936.] [101] Borden R C, Goin R T, Kao C M. Control of BTEX migration using a biologically enhanced permeable barrier[J]. Groundwater Monitoring & Remediation, 1997, 17(1): 70-80. [102] He Y T, Wilson J T, Wilkin R T. Transformation of reactive iron minerals in a permeable reactive barrier (biowall) used to treat TCE in groundwater[J]. Environmental Science & Technology, 2008, 42(17): 6 690-6 696. [103] Elliott D W, Zhang W. Field assessment of nanoscale bimetallic particles for groundwater treatment[J]. Environmental Science & Technology, 2001, 35(24): 4 922-4 926. [104] Nanotechnology Workgroup. U.S. Environmental Protection Agency Nanotechnology White Paper[C]. Washington DC: U.S. Environmental Protection Agency,2007. [105] Li Yunchun, Wang Xianxiang, Zhao Maojun. Influence factors on the in-situ remediation of halogenated organic compounds by nanoscale zero valent iron[J].Advances in Earth Science, 2013, 28(10): 1 106-1 118.[李云春, 王显祥, 赵茂俊. 纳米零价铁原位修复有机卤化物的影响因素[J]. 地球科学进展, 2013, 28(10): 1 106-1 118.] [106] Shu H Y, Chang M C, Yu H H, et al. Reduction of an azo dye Acid Black 24 solution using synthesized nanoscale zerovalent iron particles[J]. Journal of Colloid and Interface Science, 2007, 314 (1): 89-97. [107] Lin Y T, Weng C H, Chen F Y. Effective removal of AB24 dye by nano/micro-size zero-valent iron[J]. Separation and Purification Technology, 2008, 64(1): 26-30. [108] Johnson R L, Nurmi J T, O’Brien Johnson, et al. Field-scale transport and transformation of carboxymethylcellulose-stabilized nano zero-valent iron[J]. Environmental Science & Technology, 2013, 47(3): 1 573-1 580. [109] Kanel S R, Choi H. Transport characteristics of surface-modified nanoscale zero-valent iron in porous media[J]. Water Science & Technology, 2007, 55(1): 157-162. [110] Chang D, Chen T, Liu H, et al. A new approach to prepare ZVI and its application in removal of Cr (VI) from aqueous solution[J]. Chemical Engineering Journal, 2014, 244: 264-272. [111] Comba S, Sethi R. Stabilization of highly concentrated suspensions of iron nanoparticles using shear-thinning gels of xanthan gum[J]. Water Research, 2009, 43(15): 3 717-3 726. [112] Comba S, Dalmazzo D, Santagata E. Rheological characterization of xanthan suspensions of nanoscale iron for injection in porous media[J]. Journal of Hazardous Materials, 2011, 185(2): 598-605. [113] Lee C, Kim J Y, Lee W I, et al. Bactericidal effect of zero-valent iron nanoparticles on Escherichia coli[J]. Environmental Science & Technology, 2008, 42(13): 4 927-4 933. [114] Chen J, Xiu Z, Lowry G V, et al. Effect of natural organic matter on toxicity and reactivity of nano-scale zero-valent iron[J]. Water Research, 2011, 45(5): 1 995-2 001. [115] SaccM L, Fajardo C, Costa G, et al. Integrating classical and molecular approaches to evaluate the impact of nanosized zero-valent iron (nZVI) on soil organisms[J]. Chemosphere, 2014, 104: 184-189. [116] Truex M J, Vermeul V R, Mendoza D P, et al. Injection of Zero-Valent Iron into an unconfined aquifer using shear—Thinning fluids[J].Groundwater Monitoring and Remediation, 2011, 31(1): 50-58. [117] Velimirovic M, Simons Q, Bastiaens L. Guar gum coupled microscale ZVI for in situ treatment of CAHs: Continuous-flow column study[J]. Journal of Hazardous Materials, 2014, 265: 20-29. [118] Comba S, Braun J. An empirical model to predict the distribution of iron micro-particles around an injection well in a sandy aquifer[J]. Journal of Contaminant Hydrology, 2012, 132: 1-11. [119] Comba S, Braun J. A new physical model based on cascading column experiments to reproduce the radial flow and transport of micro-iron particles[J]. Journal of Contaminant Hydrology, 2012, 140: 1-11. [120] Vecchia E D, Luna M, Sethi R. Transport in porous media of highly concentrated iron micro-and nanoparticles in the presence of xanthan gum[J]. Environmental Science & Technology, 2009, 43(23): 8 942-8 947. [121] Chen K F, Li S, Zhang W X. Renewable hydrogen generation by bimetallic zero valent iron nanoparticles[J]. Chemical Engineering Journal, 2011, 170(2): 562-567. [122] Hsieh S H, Horng J J. Deposition of Fe-Ni nanoparticles on Al 2 O 3 for dechlorination of chloroform and trichloroethylene[J]. Applied Surface Science, 2006, 253(3): 1 660-1 665. [123] Nutt M O, Hughes J B, Wong M S. Designing Pd-on-Au bimetallic nanoparticle catalysts for trichloroethene hydrodechlorination[J]. Environmental Science & Technology, 2005, 39: 1 346-1 353. [124] He F, Zhao D. Preparation and characterization of a new class of starch-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water[J]. Environmental Science & Technology, 2005, 39(9): 3 314-3 320. [125] Nie X, Liu J, Zeng X, et al. Rapid degradation of hexachlorobenzene by micron Ag/Fe bimetal particles[J]. Journal of Environmental Sciences, 2013, 25(3): 473-478. [126] Xu F, Deng S, Xu J, et al. Highly active and stable Ni-Fe bimetal prepared by ball milling for catalytic hydrodechlorination of 4-chlorophenol[J]. Environmental Science & Technology, 2012, 46 (8): 4 576-4 582. [127] Coles C A, Ramachandra Rao S, Yong R N. Lead and cadmium interactions with mackinawite: Retention mechanisms and the role of pH[J]. Environmental Science & Technology, 2000, 34(6): 996-1 000. [128] Liu J R, Valsaraj K T, Devai I, et al. Immobilization of aqueous Hg(II) by mackinawite (FeS)[J]. Journal of Hazardous Materials, 2008, 157(2): 432-440. [129] Gallegos T J, Hyun S P, Hayes K F. Spectroscopic investigation of the uptake of arsenite from solution by synthetic mackinawite[J]. Environmental Science & Technology, 2007, 41(22): 7 781-7 786. [130] Han Y S, Gallegos T J, Demond A H, et al. FeS-coated sand for removal of arsenic (III) under anaerobic conditions in permeable reactive barriers[J]. Water Research, 2011, 45(2): 593-604. [131] Jeong H Y, Klaue B, Blum J D, et al. Sorption of mercuric ion by synthetic nanocrystalline mackinawite (FeS)[J]. Environmental Science & Technology, 2007, 41(22): 7 699-7 7 05. [132] Elsner M, Schwarzenbach R P, Haderlein S B. Reactivity of Fe(II)-bearing minerals toward reductive transformation of organic contaminants[J]. Environmental Science & Technology, 2004, 38(3): 799-807. [133] Henderson A D, Demond A H. Permeability of iron sulfide (FeS)-based materials for groundwater remediation[J]. Water Research, 2013, 47(3): 1 267-1 276. [134] Oostrom M, Wietsma T W, Covert M A, et al. Zero-valent iron emplacement in permeable porous media using polymer additions[J]. Groundwater Monitoring and Remediation, 2007,27(1): 122-130. [135] Yang J, Cao L, Guo R, et al. Permeable reactive barrier of surface hydrophobic granular activated carbon coupled with elemental iron for the removal of 2, 4-dichlorophenol in water[J]. Journal of Hazardous Materials, 2010, 184(1): 782-787. [136] Zhou D, Li Y, Zhang Y, et al. Column test-based optimization of the Permeable Reactive Barrier (PRB) technique for remediating groundwater contaminated by landfill leachates[J]. Journal of Contaminant Hydrology, 2014, 168: 1-16. [137] Liu S J, Jiang B, Huang G Q, et al. Laboratory column study for remediation of MTBE-contaminated groundwater using a biological two-layer permeable barrier[J]. Water Research, 2006, 40(18): 3 401-3 408. [138] Liu Zhibin, Fang Wei, Chen Zhilong. Advances in air spaerging technology of saturated zone[J]. Advances in Earth Science, 2013, 28(10): 1 154-1 159.[刘志彬, 方伟, 陈志龙. 饱和带地下水曝气修复技术研究进展[J]. 地球科学进展, 2013, 28(10): 1 154-1 159.] [139] Huling S G, Arnold R G, Sierka R A, et al. Contaminant adsorption and oxidation via Fenton reaction[J]. Journal of Environmental Engineering, 2000, 126(7): 595-600. [140] Chiu C A, Hristovski K, Huling S, et al. In-situ regeneration of saturated granular activated carbon by an iron oxide nanocatalyst[J]. Water Research, 2013, 47(4): 1 596-1 603. [141] Anfruns A, Garcia-Suarez E J, Montes-Morn M A, et al. New insights into the influence of activated carbon surface oxygen groups on H 2 O 2 decomposition and oxidation of pre-adsorbed volatile organic compounds[J]. Carbon, 2014, 77: 89-98. [142] Gao Fei, Liu Fei, Chen Honghan. Progress on remediation of Trichloroethene (TCE) in soil and groundwater contaminated source area[J]. Advances in Earth Science, 2008, 23(8): 821-829.[高霏, 刘菲, 陈鸿汉. 三氯乙烯污染土壤和地下水污染源区的修复研究进展[J]. 地球科学进展, 2008, 23(8): 821-829.] [143] Do S H,Kwon Y J,Kong S H.Feasibility study on an oxidant-injected permeable reactive barrier to treat BTEX contamination:Adsorptive and catalytic characteristics of waste-reclaimed adsorbent[J].Journal of Hazardous Materials,2011,191(1):19-25. [144] Jiang X, Qiao J, Lo I M, et al. Enhanced paramagnetic Cu 2+ ions removal by coupling a weak magnetic field with zero valent iron[J]. Journal of Hazardous Materials, 2015, 283: 880-887. [145] Liang L, Guan X, Shi Z, et al. Coupled effects of aging and weak magnetic fields on sequestration of selenite by Zero-Valent iron[J]. Environmental Science & Technology, 2014, 48(11): 6 326-6 334. [146] Liang L, Sun W, Guan X, et al. Weak magnetic field significantly enhances selenite removal kinetics by zero valent iron[J]. Water Research, 2014, 49: 371-380. [147] Ruiz C, Mena E, Caizares P, et al. Removal of 2, 4, 6-trichlorophenol from spiked clay soils by electrokinetic soil flushing assisted with granular activated carbon permeable reactive barrier[J]. Industrial and Engineering Chemistry Research, 2013, 53(2): 840-846. [148] García Y, Ruiz C, Mena E, et al. Removal of nitrates from spiked clay soils by coupling electrokinetic and permeable reactive barrier technologies[J]. Journal of Chemical Technology and Biotechnology, 2014,90(9):1 719-1 726. [149] Mena E, Ruiz C, Villaseor J, et al. Biological permeable reactive barriers coupled with electrokinetic soil flushing for the treatment of diesel-polluted clay soil[J]. Journal of Hazardous Materials, 2015, 283: 131-139. [150] Chen L, Jin S, Fallgren P H, et al. Electrochemical depassivation of zero-valent iron for trichloroethene reduction[J]. Journal of Hazardous Materials, 2012, 239: 265-269. [151] Qin Ronggao, Cao Guangzhu, Wu Yanqing. Review of the study of groundwater flow and solute transport in heterogeneous aquifer[J]. Advances in Earth Science, 2014, 29(1): 30-41.[覃荣高,曹广祝,仵彦卿. 非均质含水层中渗流与溶质运移研究进展[J]. 地球科学进展, 2014, 29(1): 30-41.] |