地球科学进展 ›› 2015, Vol. 30 ›› Issue (8): 878 -890. doi: 10.11867/j.issn.1001-8166.2015.08.0878

综述与评述 上一篇    下一篇

阿拉善地块早前寒武纪大陆地壳的形成与演化
罗志波   
  1. 天津市地球物理勘探中心,天津 300170
  • 收稿日期:2015-04-10 出版日期:2015-09-15
  • 通讯作者: 罗志波(1987-),男,江西南昌人,助理工程师,主要从事固体矿产勘查和区域地质调查研究. E-mail:mail-bobo@163.com
  • 基金资助:

    内蒙地勘基金项目“内蒙古自治区阿拉善左旗希力斯台呼都格地区蒙C-2010-1001 等航磁异常查证项目冶(编号:13-1-KC004)资助.

Formation and Evolution of Early Precambrian Continental Crust in Alxa Block

Luo Zhibo   

  1. Tianjin Geophysical Exploration Center, Tianjin 300170, China
  • Received:2015-04-10 Online:2015-09-15 Published:2015-09-15

通过对已有锆石U-Pb和Hf同位素数据进行综合分析,探讨了阿拉善地块早前寒武纪大陆地壳生长与再造的规律。数据表明,阿拉善地块内目前发现最古老锆石年龄约为3.6 Ga。3.0~3.6 Ga的碎屑锆石以及Hf模式年龄指示阿拉善地块存在中—古太古代地壳残片,其地壳生长可追溯至古太古代早期。与华北克拉通其他地区相似,阿拉善地块于新太古代2.7~2.9 Ga和2.5~2.6 Ga发育2次较为明显的地壳生长事件,前者在规模上可能大于后者。约2.5 Ga TTG构造—岩浆热事件作为华北克拉通化的标志事件,在阿拉善地块也同样存在,该期岩浆活动主体表现为对2.7~2.9 Ga新生地壳重熔再造,并可能存在更为古老地壳物质的混合,少部分为2.5~2.6 Ga新生地壳的即时再造。至古元古代时期,阿拉善地块发育2.30~2.35 Ga,2.15~2.17 Ga,2.00~2.10 Ga,1.95~1.98 Ga和1.90 Ga 5个阶段(幕式)构造—岩浆热事件,其物质来源以2.7~2.9 Ga和2.5~2.6 Ga古老地壳再造为特征,也存在一些更为年轻的(约2.1 Ga)新生地壳物质。阿拉善地块在古元古代时期即存在太古宙地壳再造,也存在初生地壳生长。关键词:早前寒武纪;地壳生长;地壳再造;锆石Hf同位素;阿拉善地块

By the analysis of the published zircon U-Pb ages and Hf isotope data, this paper firstly presents a comprehensive review about the staggered growth and reworking of early Precambrian continental crust in Alxa Block. The results show that the ancient crustal remnants of Alxa Block was formed in Meso-Paleo Archean, which was recorded by 3.0~3.6 Ga detrital zircons and Hf model ages. The early crustal growth of Alxa Block could be traced back to early Paleo-archean. Currently, the oldest zircon U-Pb age is about 3.6 Ga. Analogous to the other places of North China Craton, the Alxa Block underwent two-stage crustal growth at 2.7~2.9 Ga and 2.5~2.6 Ga respectively, and the former might be wider. The ~2.5 Ga (TTG) tectono-magmatic event, which represents the North China continent’s cratonization, also existed in Alxa Block. The corresponding zircon Hf isotope data indicate that the TTGs were mainly derived by melting of 2.7~2.9 Ga juvenile crust, possibly by mixing with a certain ancient crust, and a small portion was produced by instant reworking of 2.5~2.6 Ga juvenile crust. Proceeding to Paleo-proterozoic, the Alxa Block underwent multi-stage tectono-magmatic events, approximately peaked at 2.30~2.35 Ga, 2.15~2.17 Ga, 2.00~2.10 Ga, 1.95~1.98 Ga and ~1.90 Ga. The continental crust was mainly formed by reworking of 2.7~2.9 Ga and 2.5~2.6 Ga juvenile crust, simultaneously by a fraction of ~2.1 Ga juvenile crust. In Paleo-proterozoic, not only the Archean crustal reworking but also the juvenile crustal growth existed in Alxa Block.

中图分类号: 

[1] Albarède F. The growth of continental crust[J]. Tectonophysics,1998,296: 1-14.
[2] Li Jianghai. Review of the studies on early Precambrian geology and deep-crustal-level tectonism[J]. Geological Journal of China Universities,1998,4(3): 303-312.[李江海. 早前寒武纪地质及深成构造作用研究进展[J]. 高校地质学报,1998,4(3): 303-312.]
[3] Wang Jinrong,Zhai Xinwei,Bian Shaozhi,et al. Advance in the study of the evolution of the early crust[J]. Advances in Earth Science,2004,19(4): 591-598.[王金荣,翟新伟,边少之,等. 地壳早期演化的研究进展[J]. 地球科学进展,2004,19(4): 591-598.]
[4] Yao Yupeng,Xiong Juhua,Wang Yongsheng,et al. An introduction of the projects administrated by the division of geology, Department of Earth Science, National Natural Science Foundation of China in 2014[J]. Advances in Earth Science,2013,28(12): 1 404-1 407.[姚玉鹏,熊巨华,王勇生,等. 2014年度地球科学部二处地质科学领域工作报告[J]. 地球科学进展,2013,28(12): 1 404-1 407.]
[5] Yao Yupeng,Xiong Juhua,Wang Yongsheng,et al. An introduction of the projects administrated by the division of geology, Department of Earth Science, National Natural Science Foundation of China in 2013[J]. Advances in Earth Science,2013,28(12): 1 370-1 373.[姚玉鹏,熊巨华,王勇生,等. 2013年度地质学科项目受理与资助分析[J]. 地球科学进展,2013,28(12): 1 370-1 373.]
[6] Condie K C,Krner A. When did plate tectonics begin? Evidence from the geologic record[J]. Geological Society of America Special Pappers,2008,440: 281-294.
[7] Hurley P M, Rand J R. Pre-drift continental nuclei[J]. Science,1969,164: 1 229-1 242.
[8] McCulloch M T,Bennett V C. Pregressive growth of the Earth’s continental crust and depleted mantle:Geochemical constraints[J]. Geochimca et Cosmochimca Acta,1994,58: 4 717-4 738.
[9] McCulloch M T, Bennett V C. Evolution of the early Earth: Constraints from 143 Nd- 142 Nd isotopic systematic[J]. Lithos,1993,30: 237-255.
[10] De Paolo D J, Linn A M, Schubert G. The continental crust age distribution: Methods of determining mantle sepa-ration ages from Sm-Nd isotopic data and application to the southwestern United States[J]. Journal of Geophysical Research,1991,96:2 071-2 088.
[11] Condie K C. Episodic continental growth and supercontinenets: A mantle avalanche connection?[J]. Earth and Planetary Science Letters,1998,163: 97-108.
[12] Kerrich R, Wyman D, Fan J,et al. Boninite series: Low-Ti tholeiite associations from the 2.7Ga Abitibi greenstone belt[J]. Earth and Planetary Science Letters,1998, 164: 303-316.
[13] Zhu Bingquan, Cui Xuejun. Plate tectonic theory: A serious challenge[J]. Geotectonica et Metallogenia,2006,30(3): 265-274.[朱炳泉, 崔学军. 板块构造学说面临的挑战[J]. 大地构造与成矿学,2006,30(3): 265-274.]
[14] Zheng Yongfei, Wu Fuyuan. Growth and reworking of cratonic litho-sphere[J]. Chinese Science Bulletin,2009,54(19): 3 347-3 353.[郑永飞,吴福元. 克拉通岩石圈的生长与再造[J]. 科学通报,2009,54(14):1 945-1 949.]
[15] Zheng Yongfei,Zhang Shaobing. Formation and evolution of Precambrian continental crust in South China[J]. Chinese Science Bulletin,2007,52(1):1-10.[郑永飞,张少兵. 华南前寒武纪大陆地壳的形成和演化[J]. 科学通报,2007,52(1): 1-10.]
[16] Belousova E A,Kobayashi K L,GriffinW L,et al. The growth of the continental crust: Constraints from zircon Hf-isotope data[J]. Lithos,2010,119(3/4): 457-466.
[17] Niu F L, James D E. Fine structure of the lowermost crust beneath the Kaapvaal craton and its implications for crustal formation and evolution[J]. Earth and Planetary Science Letters,2002,200(1/2):121-130.
[18] Amelin Y, Lee D C, Halliday A N,et al. Nature of the Earth’s earliest crust from hafnium isotopes in single detrital zircons[J]. Nature,1999,399: 252-255.
[19] Wu Fuyuan, Li Xianhua, Zheng Yongfei,et al. Lu-Hf isotopic systematics and their applications in petrology[J]. Acta Petrologica Sinica,2007,23(2): 185-220.[吴福元,李献华,郑永飞,等. Lu-Hf同位素体系及其岩石学应用[J]. 岩石学报,2007,23(2): 185-220.]
[20] Zhang Shaobing, Zheng Yongfei. Growth and reworking of the Yangtze continental nucleus: Evidence from zircon U-Pb ages and Hf isotopes[J]. Acta Petrologica Sinica,2007,23(2): 393-402.[张少兵,郑永飞. 扬子陆核的生长和再造:锆石U-Pb年龄和Hf同位素研究[J]. 岩石学报,2007,23(2): 393-402.]
[21] Xiu Qunye, Lu Songnian, Yu Haifeng, et al. The isotopic age evidence for main Longshoushan Group contributing to Palaeoproterozoic[J]. Progress in Precambrian Research,2002,25(2): 93-96.[修群业,陆松年,于海峰,等. 龙首山岩群主体划归古元古代的同位素年龄证[J]. 前寒武纪研究进展,2002,25(2): 93-96.]
[22] Xiu Qunye, Yu Haifeng, Li Quan, et al. Discussion on the petrogenic time of Longshoushan Group,Gansu Province[J]. Acta Geologica Sinica,2004,78(3): 366-373.[修群业,于海峰,李铨,等. 龙首山岩群成岩时代探讨[J]. 地质学报,2004,78(3): 366-373.]
[23] Li Junjian, Shen Baofeng, Li Huimin,et al. Single zircon U-Pb age of granodioritic gneiss in the Bayan Ul area, western Inner Mongolia[J]. Geological Bulletin of China,2004,23(12): 1 243-1 245.[李俊建,沈保丰,李惠民,等. 内蒙古西部巴彦乌拉山地区花岗闪长岩质片麻岩的单颗粒锆石U-Pb法年龄[J]. 地质通报,2004,23(12): 1 243-1 245.]
[24] Geng Yuansheng, Wang Xinshe, Shen Qihan,et al. Chronology of the Precambrian metamorphic series in the Alxa area, Inner Mongolia[J]. Geology in China,2007,34(2): 251-261.[耿元生,王新社,沈其韩,等. 内蒙古阿拉善地区前寒武纪变质岩系形成时代的初步研究[J]. 中国地质,2007,34(2): 251-261.]
[25] Dong Chunyan, Liu Dunyi, Li Junjian, et al. Paleoproterozoic Khondalite Belt in the western North China Craton: New evidence from SHRIMP dating and Hf isotope composition of zircons from metamorphic rocks in the Bayan Ul-Helanshan area[J]. Chinese Science Bulletin,2007,52(21): 2 984-2 993.[董春艳,刘敦一,李俊建,等. 华北克拉通西部孔兹岩带形成时代新证据: 巴彦乌拉—贺兰山地区锆石SHRIMP定年和Hf同位素组成[J]. 科学通报,2007,52(16):1 913-1 922.]
[26] Dan W, Li X H, Guo J H, et al. Paleoproterozoic evolution of the eastern Alxa Block, westernmost North China: Evidence from in situ zircon U-Pb dating and Hf-O isotopes[J]. Gondwana Research,2012,21: 838-864.
[27] Dan W, Li X H, Guo J H,et al. Integrated in situ zircon U-Pb ageand Hf-O isotopes for the Helanshan khondalites in North China Craton: Juvenilecrustal materials deposited in active or passive continental margin[J]. Precambrian Research, 2012,222/223: 143-158.
[28] Dan W, Li X H, Wang Q,et al. Paleoproterozoic S-type granites in the Helanshan Complex, Khondalite Belt, North China Craton: Implications for rapid sedimentrecycling during slab break-off[J]. Precambrian Research,2014,254: 59-72.
[29] Gong Jianghua. Compositions, Characteristics, Chronological Framework and Origin of Early-Precambrian Metamorphic Basement in Western Alxa Block[D]. Beijing: Chinese Academy of Geological Sciences,2013.[宫江华. 西阿拉善地块早前寒武纪变质基底组成、性质、年代格架及归属[D].北京: 中国地质科学院,2013.]
[30] Wu S J,Hu J M,Ren M H,et al. Petrography and zircon U-Pb isotopic study of the Bayanwulashan Complex: Constrains on the Paleoproterozoic evolution of the Alxa Block, westernmost North China Craton[J]. Journal of Asian Earth Sciences, 2014, 94: 226-239.
[31] Liu Dunyi,Wan Yusheng,Wu Jiashan,et al. Archean crustal evolution and the oldest rocks in the North China Craton[J]. Geological Bulletin of China,2007,26(9): 1 131-1 138.[刘敦一,万渝生,伍家善,等. 华北克拉通太古宙地壳演化和最古老的岩石. 地质通报,2007, 26(9): 1 131-1 138.]
[32] Gong Jianghua,Zhang Jianxin,Yu Shengyao,et al. ~2.5 Ga TTG gneiss and itsgeological implications in the western Alxa block, North China Craton[J]. Chinese Science Bulletin,2012,57: 4 064-4 076.[宫江华,张建新,于胜尧,等. 西阿拉善地块~2.5 Ga TTG岩石及地质意义[J]. 科学通报,2012,57(28/29): 2 715-2 728.]
[33] Zhai Mingguo,Bian Aiguo,Zhao Taiping. The amalgamation of the supercontinent of North China Craton at the end of Neo-Archaean and its breakup during Late Palaeoproterozoic and Meso-Proterozoic[J]. Science in China (Series D),2000,43(Suppl.): 219-232.[翟明国,卞爱国. 华北克拉通新太古代末超大陆拼合及古元古代末—中元古代裂解[J]. 中国科学:D辑,2000,30(增刊): 129-137.]
[34] Zhang Jin,Li Jinyi,Liu Jianfeng, et al. The relationship between the Alxa Block and the North China Plate during the Early Paleozoic:New information from the Middle Ordovician detrial zircon ages in the eastern Alxa Block[J]. Acta Petrologica Sinica,2012,28(9): 2 912-2 934.[张进,李锦轶,刘建峰,等. 早古生代阿拉善地块与华北地块之间的关系:来自阿拉善东缘中奥陶统碎屑锆石的信息[J]. 岩石学报,2012,28(9): 2 912-2 934.]
[35] Bai Jin,Huang Xueguang,Wang Huichu,et al. The Precambrian Crustal Evolution of China[M]. Beijing: Geological Publishing House,1996.[白瑾,黄学光,王慧初,等. 中国前寒武纪地壳演化[M]. 北京: 地质出版社,1996.]
[36] Zhao Zongpu, Zhai Mingguo, Wang Kaiyi,et al. Precambrian Crustal Evolution of the Sino-Korean Paraplatform[M]. Beijing: Science Press,1993:284-384.[赵宗溥,翟明国,王凯怡,等. 中朝准地台前寒武纪地壳演化[M]. 北京: 科学出版社,1993:284-384.]
[37] Zhai Mingguo. Cratonization and the Ancient North China Continent: A summary and review[J]. Science in China (Series D),2011,54(8):1 110-1 120.[翟明国. 克拉通化与华北陆块的形成[J]. 中国科学:D辑,2011,41(8): 1 037-1 046.]
[38] Geng Yuansheng, Shen Qihan, Ren Liudong. Late Neoarchean to Early Paleoproterozoic magmatic events and tectonothermal system in the North China Craton[J]. Acta Petrologica Sinica,2010,26(7): 1 945-1 966.[耿元生,沈其韩,任留东. 华北克拉通晚太古代末—古元古代初的岩浆事件及构造热体制[J]. 岩石学报, 2010,26(7): 1 945-1 966.]
[39] Liu Dunyi, Geng Yuansheng,Song Biao. Late Archean crustal accetion and reworking in northwestern Hebei Province: Lsochronology evidence[J]. Acta Geoscientica Sinica—Bulletin of the Chinese Academy of Geological Sciences,1997,18(3): 226-230.[刘敦一,耿元生,宋彪. 冀西北地区晚太古代大陆地壳的增生和再造——同位素年代学证据[J]. 地球学报——中国地质科学院院报,1997,18(3): 226-232.]
[40] Liu Fu, Guo Jinghui, Lu Xiaoping, et al. Crustal growth at ~2.5 Ga in the North China Craton: Evidence from whole-rock Nd and zircon Hf isotopes in the Huai’an gneiss terrane[J]. Chinese Science Bulletin,2009,54: 4 704-4 713.[刘富,郭敬辉,路孝平,等. 华北克拉通2.5 Ga地壳生长事件的Nd-Hf同位素证据:以怀安片麻岩地体为例[J]. 科学通报,2009,54(17): 2 517-2 526.]
[41] Liu F, Guo J H, Peng P, et al. Zircon U-Pb ages and geochemistry of the Huai’an TTG gneisses terrane: Petrogenesis and implications for ~2.5Ga crustal growth in the North China Craton[J]. Precambrian Research,2012,212/213: 225-244.
[42] Zhang H F, Zhai M G, Santosh M, et al. Low-Al and high-Al trondhjemites in the Huai’an Complex, North China Craton: Geochemistry, zircon U-Pb and Hf isotopes, and implications for Neoarchean crustal growth and remelting[J]. Journal of Asian Earth Sciences, 2012,49: 203-213.
[43] Wu F Y, Zhao G C, Wilde S A, et al. Nd isotopic constraints on crustal formation in the North China Craton[J]. Journal of Asian Earth Sciences, 2005,24: 523-545.
[44] Wan Y S,Liu D Y,Wang S J, et al. ~2.7 Ga juvenile crust formation in the North China Craton (Taishane-Xintai area, western Shandong Province): Further evidence of an understated event from U-Pb dating and Hf isotopic composition of zircon[J]. Precambrian Research,2011,186(1/4): 169-180.
[45] Wan Y S,Xie S W,Yang C H,et al. Early Neoarchean (~2.7 Ga) tectono-thermal events in the North China Craton: A synthesis[J]. Precambrian Research,2014,247(1/4): 45-63.
[46] Geng Y S, Du L L,Ren L D. Growth and reworking of the early Precambrian continental crust in the North China Craton: Constraints from zircon Hf isotopes[J]. Gondwana Research,2012,21: 517-529.
[47] Zhang H F, Wang J L, Zhou D W,et al. Hadean to Neoarchean episodic crustal growth: Detrital zircon records in Paleoproterozoic quartzites from the southern North China Craton[J]. Precambrian Research, 2014,254: 245-257.
[48] Windley B F. The Evolving Continents[M]. Chichester: John Wiley & Sons,1995:1-526.
[49] Condie K C, Aster R C. Episodic zircon age spectra of orogenic granitoids: The supercontinent connection and continental growth[J]. Precambrian Research,2010,180: 227-236.
[50] Jiang N,Guo J H,Zhai M G,et al. Similar to 2.7Ga crust growth in the North China craton[J]. Precambrian Research,2010,179(1/4): 37-49.
[51] Wang A D, Liu Y C. Neoarchean (2.5~2.8Ga) crustal growth of the North China Craton revealed by zircon Hf isotope: A synthesis[J]. Geoscience Frontiers,2012,3(2): 147-173.
[52] Zhai M G. Multi-stage crustal growth and cratonization of the North China Craton[J]. Geoscience Frontiers,2014,5(4): 457-469.
[53] Su Y P, Zheng J P, Griffin W L, et al. Zircon U-Pb ages and Hf isotope of gneissic rocks from the Huai’an Complex: Implications for crustal accretion and tectonic evolution in the northern margin of the North China Craton[J]. Precambrian Research, 2014, 255: 335-354.
[54] Shan H X, Zhai M G, Wang F,et al. Zircon U-Pb ages, geochemistry, and Nd-Hf isotopes of the TTG gneisses from the Jiaobei terrane: Implications for Neoarchean crustal evolution in the North China Craton[J]. Journal of Asian Earth Sciences, 2015, 98: 61-74.
[55] Zhai Mingguo, Peng Peng. Paleoproterozoic events in North China Craton[J]. Acta Petrologica Sinica,2007,23(11): 2 665-2 682.[翟明国,彭澎.华北克拉通古元古代构造事件[J]. 岩石学报,2007, 23(11): 2 665-2 682.]
[56] Condie K C, Des Marais D J,Abbot D. Precambrian superplumes and supercontinents: A record in black shales, carbon isotopes and paleoclimates[J]. Precambrian Research,2001,106: 239-260.
[57] Zheng Y F, Zhao Z F,Wu Y B,et al. Zircon U-Pb age, Hf and O isotope constraints on protolith origin of ultrahigh-pressure eclogite and gneiss in the Dabie orogen[J]. Chemical Geology,2006,231: 135-158.
[58] Zhang J X, Gong J H,Yu S Y,et al. Neoarchean-Paleoproterozoic multiple tectonothermal events in the western Alxa block, North China Craton and their geological implication: Evidence fromzircon U-Pb ages and Hf isotopic composition[J]. Precambrian Research,2013,235: 36-57.

[1] 肖国桥,詹涛,葛俊逸. 地磁极性年表的发展回顾[J]. 地球科学进展, 2010, 25(4): 365-373.
阅读次数
全文


摘要