地球科学进展 ›› 2010, Vol. 25 ›› Issue (4): 365 -373. doi: 10.11867/j.issn.1001-8166.2010.04.0365

综述与评述 上一篇    下一篇

地磁极性年表的发展回顾
肖国桥 1,2,詹涛 2,3,葛俊逸 1,2   
  1. 1.中国科学院地球环境研究所黄土与第四纪地质国家重点实验室,陕西  西安  710075; 2.中国科学院研究生院,北京  100049; 3.中国科学院地质与地球物理研究所,北京  100029
  • 收稿日期:2009-11-25 修回日期:2010-02-24 出版日期:2010-04-10
  • 通讯作者: 肖国桥 E-mail:xgqiaocug@gmail.com
  • 基金资助:

     国家自然科学基金重点项目“我国北方风尘堆积记录的新近纪气候变化周期性研究”(编号:40730104);中国科学院知识创新工程重要方向项目“风尘堆积记录的不同时间尺度的高低纬相互作用研究——全球变冷过程的不同场景对我国季风环境的影响”(编号:KZCX2-YW-117)资助.  

Development of the Geomagnetical Polarity Time Scale: A Review

Xiao Guoqiao 1,2, Zhan Tao 2,3, Ge Junyi 1,2   

  1. 1.State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences,Xi′an  710075, China; 2.Graduate University of the Chinese Academy of Sciences, Beijing  100049, China; 3.Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing  100029, China
  • Received:2009-11-25 Revised:2010-02-24 Online:2010-04-10 Published:2010-04-10
  • Contact: Guo-Qiao XIAO E-mail:xgqiaocug@gmail.com
  • Supported by:

    National Natural Science Foundation of China

 磁性地层研究是对新生代乃至中生代沉积序列定年的重要方法之一。地磁极性年表作为磁性地层定年的标准,其精度对地层学、古生物学、古气候学等领域的研究有重要影响。回顾了地磁极性年表的发展历史,并着重介绍了当前天文极性年表的发展现状。按照地磁极性年表不同时期的发展特点,可将其发展大致归纳为3个阶段:①早期阶段:20世纪60年代末,主要基于火山岩剩磁测量和K/Ar测年建立了最近约5 Ma以来的地磁极性年表|②中期阶段:20世纪60年代末到90年代初,基于大量海底磁异常条带相对宽度建立了中中生代以来完整的地磁极性年表|③现今阶段:20世纪90年代以来,基于天文学和古气候学研究对极性界限的轨道调谐,正在构建高精度的天文极性年表。在天文学和古气候学发展的推动下,高精度的天文极性年表有望取代传统的CK95年表而被广泛应用并促进相关领域的发展。

For Middle Mesozoic to Quaternary times, the geomagnetic polarity record is central to the construction of geologic time scales. The precision of the standard geomagnetical polarity time scale (GPTS) strongly influences the development of related disciplines, such as stratigraphy,paleontology, paleoclimatology and so on. We review the history of the developments in GPTS, and mainly present the recent progress in calibration of the astronomical polarity time scale (APTS), as well the shortages of the present APTS. It can be divided into three stages according to the characteristics of the GPTS development: (1) early stage, during the 1960s, is characterized by K/Ar dating and measuring the magnetization of igneous rocks, constructed the recent 5 Ma GPTS| (2) middle stage, from late 1960s to early 1990s, is characterized by analysis of marine magnetic profiles from the world′s ocean basins, constructed the integrated GPTS since Middle Mesozoic| and (3) in the last three decades, with the developments of the Milankovitch theory (astronomical climate theory) and the astronomical calculation of the Earth′s orbit, the geological time scale can be constructed by orbital tuning, which have being successfully developed as a powerful geochronometer in calibration the APTS. The precise APTS is expected to replace the CK95 GPTS and will be widely used in related disciplines.

中图分类号: 

[1] Opdyke N D, Channell J E. Magnetic Stratigraphy[M]. San Diego, California: Academic Press, 1996.
[2] Harland W B, Armstrong R L, Cox A V, et al. A Geologic Time scale[M]. Cambridge: Cambridge University Press, 1990.
[3] Gradstein F M, Ogg J G, Smith A G. A Geologic Time Scale 2004[M]. Cambridge: Cambridge University Press, 2004.
[4] Raffi I, Backman J, Fornaciari E, et al. A review of calcareous nannofossil astrobiochronology encompassing the past 25 million years[J].Quaternary Science Reviews,2006, 25: 3 113-3 137.
[5] Berggren W A, Kent D V, Flynn J J, et al. Cenozoic geochronology[J].Geological Society of America Bulletin,1985, 96: 1 407-1 418.
[6] Berggren W A, Kent D V, Swisher C C, III, et al. A revised Cenozoic geochronology and chronostratigraphy[C]//Berggren W A, Kent D V, Aubry M P, et al, eds. Geochronology, Time Scales and Global Stratigraphic Correlation. SEPM Special Publication 54, 1995: 129-212.
[7] Shackleton N J, Berger A, Peltier W R. An alternative astronomical calibration of the lower Pleistocene timescale based on ODP Site 677[J].Transactions of the Royal Society of Edinburgh: Earth Sciences,1990, 81: 251-261.
[8] Baksi A K, Hsu V, McWilliams M O, et al. 40Ar/39Ar dating of the Brunhes-Matuyama geomagnetic field reversal[J].Science,1992, 256: 356-357.
[9] Shackleton N J, Opdyke N D. Oxygen isotope and palaeomagnetic evidence for early Northern Hemisphere glaciation[J].Nature,1977, 270: 216-219.
[10] Heller F, Liu T S. Magnetostratigraphical dating of loess deposits in China[J].Nature,1982, 300: 431-433.
[11] Guo Z T, Ruddiman W F, Hao Q Z, et al. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China[J].Nature,2002, 416: 159-163.
[12] Zhu R X, Hoffman K A, Potts R, et al. Earliest presence of humans in northeast Asia[J].Nature,2001, 413: 413-417.
[13] Scott G R, Gibert L. The oldest hand-axes in Europe[J].Nature,2009, 461: 82-85.
[14] Zhu R X, An Z S, Potts R, et al. Magnetostratigraphic dating of early humans in China[J].Earth-Science Reviews,2003, 61: 341-359.
[15] Berggren W A, Hilgen F J, Kent D V, et al. Late Neogene chronology: New perspectives in high-resolution stratigraphy[J].Geological Society of America Bulletin,1995, 107: 1272-1287.
[16] Dalton R. Telling the time[J].Nature,2006, 444: 134-135.
[17] Pälike H, Hilgen F. Rock clock synchronization[J].Nature Geoscience,2008, 1: 282.
[18] Hays J D, Imbrie J, Shackleton N J. Variations in the earth's orbit: Pacemaker of the ice ages[J].Science,1976, 194: 1 121-1 132.
[19] Imbrie J, Hays J D, Martinson D G, et al. The orbital theory of Pleistocene climate: Support from a revised chronology of the marine δ18O record[C]//Berger A, Imbrie J, Hays H, Kukla G, et al, eds. Milankovitch and Climate. Dordrecht: Reidel Publishing, 1984: 269-305.
[20] Berger A L.Obliquity and precession for the last 5 000 000 years[J].Astronomy & Astrophysics,1976, 51: 127-135.
[21] Berger A L. Long-term variations of daily insolation and Quaternary climatic changes[J].Journal of the Atmospheric Sciences,1978, 35: 2362-2367.
[22] Laskar J, Joutel F, Boudin F. Orbital, precessional, and insolation quantities for the Earth from  -20 Myr to  +10 Myr[J].Astronomy & Astrophysics,1993, 270: 522-533.
[23] Varadi F, Runnegar B, Ghil M. Successive refinements in longterm integrations of planetary orbits[J].The Astrophysical Journal,2003, 592: 620-630.
[24] Laskar J, Robutel P, Joutel F, et al. A long-term numerical solution for the insolation quantities of the Earth[J].Astronomy & Astrophysics,2004, 428: 261-285.
[25] Kent D V. Orbital tuning of geomagnetic polarity time-scales. Philosophical Transactions of the Royal Society A: Mathematical[J].Physical and Engineering Sciences,1999, 357:1 995-2 007.
[26] Brunhes B. Recherches sur la direction d′aimantation des roches volcaniques[J].Journal de Physique Théorique et Appliquée,1906, 5: 705-724.
[27] Matuyama M. On the direction of magnetisation of basalt in Japan, Tyosen and Manchuria[J].Proceedings of the Imperial Academy of Japan,1929, 5: 203-205.
[28] Hospers J. Remanent magnetism of rocks and the history of the geomagnetic field[J].Nature,1951, 168: 1 111-1 112.
[29] Cox A, Doell R R, Dalrymple G B. Geomagnetic polarity epochs and Pleistocene geochronometry[J].Nature,1963, 198: 1 049-1 051.
[30] Cox A, Doell R R, Dalrymple G B. Reversals of the Earth′s magnetic field[J].Science,1964, 144: 1 537-1 543.
[31] Doell R R, Dalrymple G B. Geomagnetic polarity epochs: A new polarity event and the age of the Brunhes-Matuyama boundary[J].Science,1966, 152: 1 060-1 061.
[32] McDougall I, Chamalaun F H. Geomagnetic polarity scale of time[J].Nature,1966, 212: 1 415-1 418.
[33] Dalrymple G B, Cox A, Doell R R, et al. Pliocene geomagnetic polarity epochs[J].Earth and Planetary Science Letters,1967, 2: 163-173.
[34] Hoare J M, Condon W H, Cox A, et al. Geology, paleomagnetism, and potassium-argon ages of basalts from Nunivak Island, Alaska[J].Geological Society of America Memoir,1968, 116: 377-413.
[35] Cox A. Geomagnetic reversals[J].Science,1969, 163: 237-245.
[36] Mankinen E A, Dalrymple G B. Revised geomagnetic polarity time scale for the interval 0-5 My BP[J].Journal of Geophysical Research,1979, 84: 615-626.
[37] Heezen B C, Ewing M, Miller E T. Trans-atlantic profile of total magnetic intensity and topography, Dakar to Barbados[J].Deep Sea Research,1953, 1: 25-33.
[38] Adams R D, Christoffel D A. Total magnetic field surveys between New Zealand and the Ross Sea[J].Journal of Geophysical Research,1962, 67: 805-813.
[39] Vine F J, Matthews D H. Magnetic anomalies over oceanic ridges[J].Nature,1963, 199: 947-949.
[40] Dietz R S. Continent and ocean basin evolution by spreading of the sea floor[J].Nature,1961, 190: 854-857.
[41] Hess H H. History of ocean basins[J].Petrologic Studies,1962:599-620.
[42] Heirtzler J R, Pichon X L. Crustal structure of the Mid-Ocean Ridges 3. Magnetic anomalies over the Mid-Atlantic Ridge[J].Journal of Geophysical Research,1965, 70: 4 013-4 033.
[43] Heirtzler J R, Pichon X L, Baron J G. Magnetic anomalies over the Reykjanes Ridge[J].Deep Sea Research,1966, 13: 427-443.
[44] Pitman I W C, Heirtzler J R. Magnetic anomalies over the Pacific-Antarctic Ridge[J].Science,1966, 154: 1 164-1 167.
[45] Vine F J. Spreading of the ocean floor: New evidence[J].Science,1966, 154: 1 405-1 415.
[46] Dickson G O, Pitman W C III, Heirtzler J R. Magnetic anomalies in the South Atlantic and ocean floor spreading[J].Journal of Geophysical Research,1968, 73: 2 087-2 100.
[47] Le Pichon X, Heirtzler J R. Magnetic anomalies in the Indian Ocean and sea-floor spreading continents[J].Journal of Geophysical Research,1968, 73: 2 101-2 117.
[48] Pitman W C III, Herron E M, Heirtzler J R. Magnetic anomalies in the Pacific and sea floor spreading[J].Journal of Geophysical Research,1968, 73: 2 069-2 085.
[49] Heirtzler J R, Dickson G O, Herron E M, et al. Marine magnetic anomalies, geomagnetic field reversals, and motions of the Ocean floor and continents[J].Journal of Geophysical Research,1968, 73: 2 119-2 136.
[50] Larson R L, Pitman W C I. Worldwide correlation of Mesozoic magnetic anomalies, and its implications[J].Geological Society of America Bulletin,1972, 83: 3 645-3 661.
[51] Cande S C, Larson R L, LaBrecque J L. Magnetic lineations in the Pacific Jurassic quiet zone[J].Earth and Planetary Science Letters,1978, 41: 434-440.
[52] Handschumacher D W, Sager W W, Hilde T W C, et al. Pre-Cretaceous tectonic evolution of the Pacific plate and extension of the geomagnetic polarity reversal time scale with implications for the origin of the Jurassic “Quiet Zone”[J].Tectonophysics,1988, 155: 365-380.
[53] Tivey M A, Sager W W, Lee S-M, et al. Origin of the Pacific Jurassic quiet zone[J].Geology,2006, 34: 789-792.
[54] Wilson D S. Confirmation of the astronomical calibration of the magnetic polarity timescale from sea-floor spreading rate[J].Nature,1993, 364: 788-790.
[55] Talwani M, Windisch C C, Langseth J M G. Reykjanes Ridge Crest: A detailed geophysical study[J].Journal of Geophysical Research,1971, 76: 473-517.
[56] Blakely R J. Geomagnetic reversals and crustal spending rates during the Miocene[J].Journal of Geophysical Research,1974, 79: 2 979-2 985.
[57] Cande S C, Kristoffersen Y. Late Cretaceous magnetic anomalies in the North Atlantic[J].Earth and Planetary Science Letters,1977, 35: 215-224.
[58] Tarling D H, Mitchell J G. Revised Cenozoic polarity time scale[J].Geology,1976, 4: 133-136.
[59] LaBrecque J L, Kent D V, Cande S C. Revised magnetic polarity time scale for late Cretaceous and Cenozoic time[J].Geology,1977, 5: 330-335.
[60] Ness G, Levi S, Couch R. Marine magnetic anomaly timescales for the Cenozoic and Late Cretaceous: A précis, critique, and synthesis[J].Reviews of Geophysics,1980, 18: 753-770.
[61] Cande S C, Kent D V. A new geomagnetic polarity time scale for the late Cretaceous and Cenozoic[J].Journal of Geophysical Research,1992, 97: 13 917-13 951.
[62] Cande S C, Kent D V. Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic[J].Journal of Geophysical Research,1995, 100: 6093-6095.
[63] Milankovitch M. Théorie Mathématique des Phénomènes Thermiques Produits Par la Radiation Solaire[M]. Academie Yougoslave des Sciences et Arts. Paris: Gauthier-Villars, 1920.
[64] Milankovitch M. Kanon der Erdbestrahlung Und Seine anwendung auf das Eiszeitproblem[M]. Belgrade: Serbian Academy of Science, Special 133,1941.
[65] Johnson R G. Brunhes-Matuyama magnetic reversal dated at 790 000 yr BP by marine-astronomical correlations[J].Quaternary Research,1982, 17: 135-147.
[66] Renne P R, Deino A L, Walter R C, et al. Intercalibration of astronomical and radioisotopic time[J].Geology,1994, 22: 783-786.
[67] Hilgen F J. Astronomical calibration of Gauss to Matuyama sapropels in the Mediterranean and implication for the Geomagnetic Polarity Time Scale[J].Earth and Planetary Science Letters,1991, 104: 226-244.
[68] Hilgen F J. Extension of the astronomically calibrated (polarity) time scale to the Miocene/Pliocene boundary[J].Earth and Planetary Science Letters,1991, 107: 349-368.
[69] Shackleton N J, Crowhurst S, Hagelberg T, et al. A new Late Neogene time scale: Application to Leg 138 Sites[J].Proceedings of the Ocean Drilling Program, Scientific Results,1995, 138: 73-101.[70] Hilgen F J, Krijgsman W, Langereis C G, et al. Extending the astronomical (polarity) time scale into the Miocene[J].Earth and Planetary Science Letters,1995, 136: 495-510.
[71] Kent D V, Olsen P E. Astronomically tuned geomagnetic polarity timescale for the Late Triassic[J].Journal of Geophysical Research,1999, 104: 12 831-12 841.
[72] Shackleton N J, Hall M A, Raffi I, et al. Astronomical calibration age for the Oligocene-Miocene boundary[J].Geology,2000, 28: 447-450.
[73] Pälike H, Shackleton N J, Röhl U. Astronomical forcing in Late Eocene marine sediments[J].Earth and Planetary Science Letters,2001, 193: 589-602.
[74] Abdul Aziz H, Krijgsman W, Hilgen F J, et al. An astronomical polarity timescale for the late middle Miocene based on cyclic continental sequences[J].Journal of Geophysical Research,2003, 108(B3), 2159, doi:10.1029/2002JB001818.
[75] Dinarès-Turell J, Baceta J I, Pujalte V, et al. Untangling the Palaeocene climatic rhythm: An astronomically calibrated Early Palaeocene magnetostratigraphy and biostratigraphy at Zumaia (Basque basin, northern Spain)[J].Earth and Planetary Science Letters,2003, 216: 483-500.
[76] Lourens L J, Hilgen F J, Shackleton N J, et al. The Neogen period[M]//Gradstein F M, Ogg J G, Smith A G, eds. A Geologic Time Scale 2004. Cambridge: Cambridge University Press, 2004: 409-440.
[77] Ogg J G, Smith A G. The geomagnetic polarity time scale[M]//Gradstein F M, Ogg J G, Smith A G, eds. A Geologic Time Scale. Cambridge: Cambridge University Press, 2004: 63-86.
[78] Billups K, Pälike H, Channell J E T, et al. Astronomic calibration of the late Oligocene through early Miocene geomagnetic polarity time scale[J].Earth and Planetary Science Letters,2004, 224: 33-44.
[79] Pälike H, Norris R D, Herrle J O, et al. The heartbeat of the Oligocene climate system[J].Science,2006, 314: 1 894-1 898.
[80] Evans H F, Westerhold T, Paulsen H, et al. Astronomical ages for Miocene polarity chrons C4Ar-C5r (9.3-11.2 Ma), and for three excursion chrons within C5n.2n[J].Earth and Planetary Science Letters,2007, 256: 455-465.
[81] Westerhold T, Röhl U, Laskar J, et al. On the duration of magnetochrons C24r and C25n and the timing of early Eocene global warming events: Implications from the Ocean Drilling Program Leg 208 Walvis Ridge depth transect[J].Paleoceanography,2007, 22,PA2201, doi:2210.1029/2006PA001322.
[82] Westerhold T, Röhl U, Raffi I, et al. Astronomical calibration of the Paleocene time[J].Palaeogeography, Palaeoclimatology, Palaeoecology,2008, 257: 377-403.
[83] Westerhold T, Röhl U. High resolution cyclostratigraphy of the early Eocene-new insights into the origin of the Cenozoic cooling trend[J].Climate of the past,2009, 5: 309-327.
[84] Abels H A, Hilgen F J, Krijgsman W, et al. Long-period orbital control on middle Miocene global cooling: Integrated stratigraphy and astronomical tuning of the Blue Clay Formation on Malta[J].Paleoceanography,2005, 20,PA4012, doi:4010.1029/2004PA001129.
[85] Hüsing S K, Hilgen F J, Aziz H A, et al. Completing the Neogene geological time scale between 8.5 and 12.5 Ma[J].Earth and Planetary Science Letters,2007, 253: 340-358.
[86] Hüsing S K, Cascella A, Hilgen F J, et al. Astrochronology of the Mediterranean Langhian between 15.29 and 14.17 Ma[J].Earth and Planetary Science Letters,2010, 290: 254-269.
[87] Kuiper K F, Hilgen F J, Steenbrink J, et al. 40Ar/39Ar ages of tephras intercalated in astronomically tuned Neogene sedimentary sequences in the eastern Mediterranean[J].Earth and Planetary Science Letters,2004, 222: 583-597.
[88] Kuiper K F, Deino A, Hilgen F J, et al. Synchronizing rock clocks of Earth history[J].Science,2008, 320: 500-504.
[89] Pälike H, Laskar J, Shackleton N J. Geologic constraints on the chaotic diffusion of the solar system[J].Geology,2004, 32: 929-932.
[90] Fuller M. Geomagnetic field intensity, excursions, reversals and the 41 000-yr obliquity signal[J]. Earth and Planetary Science Letters,2006, 245: 605-615.
[91] Xuan C, Channell J E T. Testing the relationship between timing of geomagnetic reversals/excursions and phase of orbital cycles using circular statistics and Monte Carlo simulations[J]. Earth and Planetary Science Letters,2008, 268: 245-254.

[1] 石广玉,刘玉芝. 地球气候变化的米兰科维奇理论研究进展[J]. 地球科学进展, 2006, 21(03): 278-285.
[2] 姚海涛;邓成龙;朱日祥. 元谋人时代研究评述——兼论我国早更新世古人类时代问题[J]. 地球科学进展, 2005, 20(11): 1191-1198.
[3] 邓云山,孟自芳,郑彦鹏. 塔里木盆地古地磁研究新成果[J]. 地球科学进展, 1999, 14(6): 624-625.
阅读次数
全文


摘要