地球科学进展 ›› 2006, Vol. 21 ›› Issue (03): 278 -285. doi: 10.11867/j.issn.1001-8166.2006.03.0278

综述与评述 上一篇    下一篇

地球气候变化的米兰科维奇理论研究进展
石广玉 1,刘玉芝 1,2   
  1. 1.中国科学院大气物理研究所,北京 100029;2.中国科学院研究生院,北京 100039
  • 收稿日期:2005-01-09 修回日期:2005-12-13 出版日期:2006-03-15
  • 通讯作者: 石广玉 E-mail:shigy@mail.iap.ac.cn
  • 基金资助:

    国家自然科学基金项目“过去42万年地面温度变化的物理模式研究”(编号:40575042)资助.

Progresses in the Milankovitch Theory of Earth's Climate Change

Shi Guangyu 1, Liu Yuzhi 1,2   

  1. 1.Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China;2.Graduate School of the Chinese Academy of Sciences, Beijing 100039, China
  • Received:2005-01-09 Revised:2005-12-13 Online:2006-03-15 Published:2006-03-15

米兰科维奇理论是从全球尺度上研究日射量与地球气候之间关系的天文理论(以下简称为“米氏理论”)。该理论认为,地球轨道偏心率、黄赤交角及岁差等三要素变化引起的到达北半球中高纬度夏季日射量变化是造成冰期—间冰期旋回的根本原因。详细回顾了米氏理论的发展历程,并以南极东方站过去42万年大气和气候变化的历史资料为例,讨论了经典米氏理论中有待研究的若干问题。

Milankovitch has proposed an astronomical theory to explain the relationship between solar insolation and the Earth's climate. It postulates that the changes in insolation at the Northern Hemisphere during the summer months, which are caused by changes in Earth's eccentricity, obliquity and precession, are mainly responsible for driving the glacialinterglacial cycle. In this paper, we reviewed the development process of the Milankovitch theory and its progresses in some detail, and discussed several scientific issues that need to be investigated further by taking the climate and atmospheric history of the past 420 000 years from the Vostok ice core, Antarctica, as an example.

中图分类号: 

[1] Hays J D, Imbrie J, Shackleton N J. Variations in the Earth's Orbit: Pacemaker of the Ice Ages[J]. Science, 1976, 194(4 270):1 121-1 132.

[2] Isaac J W, Coplen T B, Landwehr J M, et al. Continuous 500,000-Year Climate Record from Vein Calcite [J]. Science, 1992, 258: 255-256.

[3] Winograd I J, Coplen T B, Landwehr J M, et al. Continuous 500,000-year climate record from vein calcite in Devils Hole, Nevada [J]. Science, 1992, 258: 255-260.

[4] Coplen T B, Winograd I J, Landwehr J M, et al. Continuous 500,000-year climate record from vein calcite in Devils Hole, Nevada [J]. Science, 1994, 263: 361-365.

[5] Dahl-Jensen D, Mosegaard K, Gundestrup N, et al. Past temperatures directly from the Greenland Ice Sheet [J]. Science, 1998, 282: 268-271.

[6] Petit J R, Jouzel J, Raynaud D, et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica [J]. Nature,1999, 399: 429-436.

[7] McManus J F. A great grand-daddy of ice cores [J]. Nature, 2004, 429: 611-612.

[8] Milankovitch M M. Canon of Insolation and the Ice-Age Problem [M]. Belgrade:Serbian Academy Special Publication (English Translation by the Israel Program for Scientific Translations, Published for the U.S. Department of Commerce and the National Science Foundation, Washington, D.C.) 1941, Chapter 121: 567.

[9] Kerr R A. Climate control: How large a role for orbital variations [J]. Science, 1978, 201: 144-146.

[10] Emiliani C, Hudson J H, Shinn E A, et al. Oxygen and carbon isotopic growth record in a reef coral from the Florida Keys and a deep-sea coral from Blake Plateau [J]. Science, 1978, 202(4 368): 627-629.

[11] CLIMAP Project Members. The surface of the Ice-age Earth [J]. Science, 1976, 191: 1 131-1 137.

[12] Pisias N G. Late Quaternary sediment of the Panama Basin: Sedimentation rates, periodicities, and controls of carbonate and opal accumulation [J]. Geological Society of America Memoir, 1976, 145: 375-391.

[13] EPICA community members. Eight glacial cycles from an Antarctic ice core [J]. Nature, 2004, 429: 623-628.

[14] Lu Houyuan,Wang Sumin,Wu Naiqin,et al. A new pollen record of the last 2.8 Ma from the Co Ngoin,central Tibetan Plateau [J]. Science in China (D), 2001, 44(suppl.): 292-300. [吕厚远,王苏民,吴乃琴,.青藏高原错鄂湖2.8 Ma来的孢粉记录 [J].中国科学:D, 2001, 31(增刊): 234-240.]

[15] Shi Yafeng, Kong Zhaochen. The Climates and Environments of Holocene Megathermal in China [M]. Beijing: China Ocean Press, 1992:1-212. [施雅风, 孔昭宸. 中国全新世大暖期气候与环境[M]. 北京: 海洋出版社, 1992:1-212.]

[16] Kang Xingcheng, Cheng Guodong, Kang Ersi, et al. Runoff from mountain outlet in the Heihe region for the past one thousand years by reconstructing tree2rings [J]. Science in China (D), 2002, 32(8): 675-685. [康兴成,程国栋,康尔泗, . 利用树轮资料重建黑河近千年来出山口径流量 [J]. 中国科学:D, 2002,32 (8):675-685.]

[17] Wang Shaowu, Ye Jinlin, Gong Daoyi. Climate in China during the Little Ice Age [J]. Quaternary Sciences, 1998, 1: 54-64. [王绍武, 叶瑾琳, 龚道溢. 中国小冰期的气候[J]. 第四纪研究, 1998,(1): 54-64.]

[18] Yao Tandong. Climatic and environmental record in the past about 2000 years from the Guliya Ice Core [J]. Quaternary Sciences,1997,(1):52-61.[姚檀栋. 古里雅冰芯近2000年来气候环境变化记录[J]. 第四纪研究, 1997,(1):52-61.]

[19] Yao Tandong, Shi Yafeng. Holocene climatic fluctuation of the Dunde ice core record [C]Shi Yafeng ed. The Climates and Environments of Holocene Megathermal in China. Beijing: China Ocean Press, 1992:206-211. [姚檀栋, 施雅风. 祁连山敦德冰芯记录的全新世气候变化[C]施雅风主编.中国全新世大暖期气候与环境.北京: 海洋出版社, 1992:206-211.]

[20] Tan Ming, Qin Xiaoguang, Liu Dongsheng. Interannual, decadal and century scale climatic changes revealed by stalagmite records [J]. Science in China (D), 1998, 41(4): 416-421. [谭明,秦小光,刘东生, 石笋记录的年际、十年、百年尺度气候变化[J].中国科学:D,1998,28(3): 272-277.]

[21] An Zhisheng, Kutzbach J E, Prell W L, et al. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan Plateau since Late Miocene times [J]. Nature, 2001, 411: 62-66.

[22] Pollard D. A simple ice sheet model yields realistic 100kyr glacial cycles [J]. Nature,1982, 296: 334-338.

[23] Imbrie J, Imbrie J Z. Modeling the climatic response to orbital variations [J]. Science, 1980, 207: 943-953.

[24] David M S, William L D. Milankovitch Radiation variations: A quantitative evaluation [J]. Science, 1968, 162: 1 270-1 272.

[25] Broecker W S, Thurber D L, Goddard J, et al. Milankovich hypothesis supported by precise dating of coral reefs and deep-sea cores [J]. Science, 1968, 159: 297-300.

[26] Kukla G J. Missing Link between Milankovitch and climate [J]. Nature, 1975, 253: 600-603.

[27] Berger A. Long-term variations of daily insolation and Quaternary climatic change [J]. Journal of Atmospherie Sciences,1978,35:2 362-2 367.

[28] Dickinson R E. Carbon Dioxide Review[M]. Clarendon: New York, NY, USA, 1982:101-133.

[29] WMO. Atmospheric Ozone: Global Ozone Research and Monitoring Project, World Meteorological Organization [R]. Geneva, Switzerland, Chapter 15.1986.

[30] Cess R D, Zhang M H, Potter G L, et al. Uncertainties in CO2 radiative forcing in atmospheric general circulation models [J]. Science, 1993, 262:1 252-1 255.

[31] Ramanathan V, Cicerone R, Singh H, et al. Trace gas trends and their potential role in climate change [J]. Journal of Geophysic Research, 1985,90:5 547-5 566.

[32] Houghton J T, L G Meira Filho, Callender B A, et al. eds. Climate Change 1995: The IPCC Scientific Assessment [C]. Cambridge: Cambridge University Press, 1996.

[33] Shackleton N J, Hall M A, Line J, et al. Carbon isotope data in Core V19-30 confirm reduced carbon dioxide in the ice age atmosphere [J]. Nature, 1983, 306:319-322.

[34] Ruddiman W F. Orbital insolation, ice volume, and greenhouse gases [J]. Quaternary Science Review, 2003, 22:1 597-1 629.

[35] Ruddiman W F. The Role of Greenhouse Gases in Orbital-Scale Climatic Changes [J]. EOS, 2004, 85: 1, 6-7.

[36] Zhang X Y, Lu H Y, Arimoto R, et al. Atmospheric dust loadings and their relationship to rapid oscillations of the Asian winter monsoon climate: Two 250-kyr loess records [J]. Earth and Planetary Science Letters, 2002, 202(3/4): 637-643.

[37] Zhang X Y, Arimoto R, An Z S, et al. Dust emission from Chinese desert sources linked to variations in atmospheric circulation [J]. Journal of Geophysical Research, 1997, 102: 28 041-28 047.

[38] Zhang X Y, Arimoto R, An Z S, et al. Late Quaternary records of the atmospheric input of aeolian dust to the Center of the Chinese Loess Plateau [J]. Quaternary Research, 1994, 41: 35-43.

[39] Zhang De'er. A preliminary meteorological analysis on the dust fall in China since historical times [J]. Science in China(B), 1984, 3: 278-288. [张德二.我国历史时期以来降尘的天气气候学初步分析 [J].中国科学:B,1984, 3: 278-288.]

[40] Ramaswamy V, Boucher O, Haigh J, et al. Radiative Forcing of Climate Change [C]Houghton J T, et al. IPCC Climate change: The Scientific Basis, Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambrige: Cambridge University Press, 2001:881.

[41] Harvey L D D. Climatic impact of ice-age aerosols [J]. Nature, 1988, 334: 333-335.

[42] Jouzel J, Lorius C, Petit J R, et al. Vostok ice core: A continuous isotope temperature record over the last climatic cycle (160,000 years) [J]. Nature, 1987, 329: 408-414.

[43] Kerr R A. Milankovitch Climate cycles: Old and Unsteady [J]. Science,1981, 213: 1 095-1 096.

[44] Imbrie J, Hays J D, Martinson D G, et al. The orbital theory of Pleistocene climate: Support from a revised chronology of the marine 18O record [C]Dordrecht: Reidel Publishing Co.,1984:269-305.

[45] Imbrie J, Berger A, Boyle E, et al. On the structure and origin of major glaciation cycles 2. The 100 000 year cycle [J]. Paleoceanography, 1993, 8:699-735.

[46] Weertman J. Milankovitch solar radiation variations and ice age ice sheet sizes [J]. Nature, 1976, 261: 17-20.

[47] Oerlemans J. Model experiments on the 100,000-yr glacial cycle [J]. Nature, 1980, 287: 430-432.

[48] Gall e H, van Ypersele J P, Fichefet T, et al. Simulation of the last glacial cycle by a coupled, sectorially averaged climate ice-sheet model. II. Response to insolation and CO2 variation [J]. Journal of Geophysieal Research, 1992, 97: 15 713-15 740.

[49] Saltzman B, Maasch K A. Carbon cycle instability as a cause of the late Pleistocene ice age oscillations: Modeling the asymmetric response [J]. Global Biogeochemistry Cycle, 1988, 2: 177-185.

[50] Benzi R, Parisi G, Sutera A. Stochastic resonance in climatic change [J]. Tellus, 1982, 34: 10-16.

[51] Muller R A, MacDonald G J. Glacial cycles and astronomical forcing [J]. Science, 1997, 277: 215-218.

[52] Kortenkamp S J, Dermott S F. A 100,000-year periodicity in the accretion rate of interplanetary dust [J]. Science, 1998, 280: 874-876.

[53] Paillard D. The timing of Pleistocene glaciations from a simple multiple-state climate model [J]. Nature, 1998, 391: 378-381.

[54] Rial J A. Pacemaking the Ice Ages by frequency modulation of Earth's orbital eccentricity [J]. Science, 1999, 285: 564-568.

[55] Budyko M I. The effect of solar radiation variations on the climate of the Earth [J]. Tellus, 1969, 21:611-619.

[56] Shi G Y, Liu Y Z. The role of greenhouse gases and aerosols in the glacial and inter-glacial cycle over the past 420,000 years: A physical model study[J]. AAS,2006,be Submitted.

[1] 单薪蒙, 温家洪, 王军, 胡恒智. 深度不确定性下的灾害风险稳健决策方法评述[J]. 地球科学进展, 2021, 36(9): 911-921.
[2] 段伟利, 邹珊, 陈亚宁, 李稚, 方功焕. 18792015年巴尔喀什湖水位变化及其主要影响因素分析[J]. 地球科学进展, 2021, 36(9): 950-961.
[3] 王澄海, 张晟宁, 张飞民, 李课臣, 杨凯. 论全球变暖背景下中国西北地区降水增加问题[J]. 地球科学进展, 2021, 36(9): 980-989.
[4] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[5] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[6] 张子洋, 闫明, MULVANEY Robert, 季峻峰, 效存德, 刘雷保, 安春雷. 东南极 LGB69冰芯 17122001年气温变化记录的初步研究[J]. 地球科学进展, 2021, 36(2): 172-184.
[7] 崔林丽, 史军, 杜华强. 植被物候的遥感提取及其影响因素研究进展[J]. 地球科学进展, 2021, 36(1): 9-16.
[8] 龙上敏,刘秦玉,郑小童,程旭华,白学志,高臻. 南大洋海温长期变化研究进展[J]. 地球科学进展, 2020, 35(9): 962-977.
[9] 蔡运龙. 生态问题的社会经济检视[J]. 地球科学进展, 2020, 35(7): 742-749.
[10] 萧凌波. 17361911年华北饥荒的时空分布及其与气候、灾害、收成的关系[J]. 地球科学进展, 2020, 35(5): 478-487.
[11] 熊建国, 李有利, 张培震. 夷平面研究新进展[J]. 地球科学进展, 2020, 35(4): 378-388.
[12] 武登云, 任治坤, 吕红华, 刘金瑞, 哈广浩, 张弛, 朱孟浩. 冲积扇形态与沉积特征及其动力学控制因素:进展与展望[J]. 地球科学进展, 2020, 35(4): 389-403.
[13] 胡利民,石学法,叶君,张钰莹. 北极东西伯利亚陆架沉积有机碳的源汇过程研究进展[J]. 地球科学进展, 2020, 35(10): 1073-1086.
[14] 王亚锋,芦晓明,朱海峰,梁尔源. 高山树线的调查与研究方法[J]. 地球科学进展, 2020, 35(1): 38-51.
[15] 罗鑫玥,陈明星. 城镇化对气候变化影响的研究进展[J]. 地球科学进展, 2019, 34(9): 984-997.
阅读次数
全文


摘要