[1] Zektser I S, Dzhamalov R G, Safronova T I. Role of Submarine Groundwater Discharge in the Water Balance of Australia[M]. Wallingford: IAHS-AISH Publication, 1983: 209-219. [2] Church T. An underground route for the water cycle[J]. Nature, 1996, 380: 579-580. [3] Burnett W C, Bokuniewicz H, Huettel M, et al. Groundwater and pore water inputs to the coastal zone[J]. Biogeochemistry, 2003, 66(1/2): 3-33. [4] Moore W S. The effect of submarine groundwater discharge on the ocean[J]. Annual Review of Marine Science, 2010, 2: 59-88. [5] Kim G, Ryu J W, Yang H S, et al. Submarine Groundwater Discharge (SGD) into the Yellow Sea revealed by Ra-228 and Ra-226 isotopes: Lmplications for global silicate fluxes[J]. Earth and Planetary Science Letters, 2005, 237(1/2): 156-166. [6] Swarzenski P W, Reich C, Kroeger K D, et al. Ra and Rn isotopes as natural tracers of submarine groundwater discharge in Tampa Bay, Florida[J]. Marine Chemistry, 2007, 104(1/2): 69-84. [7] Hwang D W, Kim G, Lee W C, et al. The role of Submarine Groundwater Discharge (SGD) in nutrient budgets of Gamak Bay, a shellfish farming bay, in Korea[J]. Journal of Sea Research, 2010, 64(3): 224-230. [8] Lapointe B E, O’Connell J. Nutrient-enhanced growth of Cladophora prolifera in harrington sound, bermuda: Eutrophication of a confined, phosphorus-limited marine ecosystem[J]. Estuarine, Coastal and Shelf Science, 1989, 28(4): 347-360. [9] Boehm A B, Shellenbarger G G, Paytan A. Groundwater discharge: Potential association with fecal indicator bacteria in the Surf zone[J]. Environmental Science & Technology, 2004, 38(13): 3 558-3 566. [10] Lee Y W, Kim G. Linking groundwater-borne nutrients and dinoflagellate red-tide outbreaks in the southern sea of Korea using a Ra tracer[J]. Estuarine, Coastal and Shelf Science, 2007, 71(1/2): 309-317. [11] Tse K C, Jiao J J. Estimation of submarine groundwater discharge in Plover Cove, Tolo Harbour, Hong Kong by Rn-222[J]. Marine Chemistry, 2008, 111(3/4): 160-170. [12] Lee Y W, Hwang D W, Kim G, et al. Nutrient inputs from Submarine Groundwater Discharge (SGD) in Masan Bay, an embayment surrounded by heavily industrialized cities, Korea[J]. Science of the Total Environment, 2009, 407(9): 3 181-3 188. [13] Moore W S. High fluxes of radium and barium from the mouth of the Ganges-Brahmaputra river during low river discharge suggest a large groundwater source[J]. Earth and Planetary Science Letters, 1997, 150(1/2): 141-150. [14] Moore W S. The subterranean estuary: A reaction zone of groundwater and sea water[J]. Marine Chemistry, 1999, 65: 111-125. [15] Charette M A, Sholkovitz E R. Oxidative precipitation of groundwater-derived ferrous iron in the subterranean estuary of a coastal bay[J]. Geophysical Research Letters, 2002, 29(10),doi:10.1029/2001GL014512. [16] Burnett W C, Aggarwal P K, Aureli A, et al. Quantifying submarine groundwater discharge in the coastal zone via multiple methods[J]. Science of the Total Environment, 2006, 367(2/3): 498-543. [17] Moore W S, Blanton J O, Joye S B. Estimates of flushing times, submarine groundwater discharge, and nutrient fluxes to Okatee Estuary, South Carolina[J]. Journal of Geophysical Research—Oceans, 2006, 111(C9), doi:10.1029/2005JC003041. [18] Beck A J, Rapaglia J P, Cochran J K, et al. Radium mass-balance in Jamaica Bay, NY: Evidence for a substantial flux of submarine groundwater[J]. Marine Chemistry, 2007, 106(3/4): 419-441. [19] Li H L, Jiao J J. Quantifying tidal contribution to submarine groundwater discharges: A review[J]. Chinese Science Bulletin, 2013, 58(25): 3 053-3 059. [20] Xin P, Wang S S J, Robinson C, et al. Memory of past random wave conditions in submarine groundwater discharge[J]. Geophysical Research Letters, 2014, 41(7): 2 401-2 410. [21] Xin P, Robinson C, Li L, et al. Effects of wave forcing on a subterranean estuary[J]. Water Resources Research, 2010, 46(12),doi:10.1029/2010WR009632. [22] Smith A J. Mixed convection and density-dependent seawater circulation in coastal aquifers[J]. Water Resources Research, 2004, 40, doi:10.1029/2003wr002977. [23] Robinson C, Li L, Prommer H. Tide-induced recirculation across the aquifer-ocean interface[J]. Water Resources Research, 2007, 43: W07428, doi:10.1029/2006WR005679. [24] Qu W, Li H, Wan L, et al. Numerical simulations of steady-state salinity distribution and submarine groundwater discharges in homogeneous anisotropic coastal aquifers[J]. Advances in Water Resources, 2014, 74: 318-328. [25] Wilson A M. The occurrence and chemical implications of geothermal convection of seawater in continental shelves[J]. Geophysical Research Letters, 2003, 30, doi:10.1029/2003GL018499. [26] Konikow L F, Akhavan M, Langevin C D, et al. Seawater circulation in sediments driven by interactions between seabed topography and fluid density[J]. Water Resources Research, 2013, 49: 1 386-1 399. [27] Wang X J, Li H L, Jiao J J, et al. Submarine fresh groundwater discharge into Laizhou Bay comparable to the Yellow River flux[J]. Scientific Reports, 2015, 5: 8 814. [28] Moore W S, Sarmiento J L, Key R M. Submarine groundwater discharge revealed by Ra-228 distribution in the upper Atlantic Ocean[J]. Nature Geoscience, 2008, 1(5): 309-311. [29] Taniguchi M, Ishitobi T, Chen J Y, et al. Submarine groundwater discharge from the Yellow River Delta to the Bohai Sea, China[J]. Journal of Geophysical Research—Oceans, 2008, 113(C6),doi:10.1029/2007JC004498. [30] Ma Q, Li H L, Wang X J, et al. Estimation of seawater-groundwater exchange rate: Case study in a tidal flat with a large-scale seepage face (Laizhou Bay, China)[J]. Hydrogeology Journal, 2015, 23: 265-275. [31] Wilson J, Rocha C. Regional scale assessment of submarine groundwater discharge in Ireland combining medium resolution satellite imagery and geochemical tracing techniques[J]. Remote Sensing of Environment, 2012, 119: 21-34. [32] Schubert M, Scholten J, Schmidt A, et al. Submarine groundwater discharge at a single spot location: Evaluation of different detection approaches[J]. Water, 2014, 6(3): 584-601. [33] Moore W S. Large groundwater inputs to coastal waters revealed by Ra-226 enrichments[J]. Nature, 1996, 380(6 575): 612-614. [34] Li L, Barry D A, Stagnitti F, et al. Submarine groundwater discharge and associated chemical input to a coastal sea[J]. Water Resources Research, 1999, 35(11): 3 253-3 259. [35] Charette M A, Buesseler K O, Andrews J E. Utility of radium isotopes for evaluating the input and transport of groundwater-derived nitrogen to a Cape Cod Estuary[J]. Limnology and Oceanography,2001, 46(2): 465-470. [36] Kim G, Lee K K, Park K S, et al. Large Submarine Groundwater Discharge (SGD) from a volcanic island[J]. Geophysical Research Letters, 2003, 30(21),doi:10.1029/2003GL018378. [37] Taniguchi M, Burnett W C, Smith C F, et al. Spatial and temporal distributions of submarine groundwater discharge rates obtained from various types of seepage meters at a site in the Northeastern Gulf of Mexico[J]. Biogeochemistry, 2003, 66(1/2): 35-53. [38] Wilson A M. Fresh and saline groundwater discharge to the ocean: A regional perspective[J]. Water Resources Research, 2005, 41(2), doi:10.1029/2004WR003399. [39] Michael H A, Charette M A, Harvey C F. Patterns and variability of groundwater flow and radium activity at the coast: A case study from Waquoit Bay, Massachusetts[J]. Marine Chemistry, 2011, 127(1/4): 100-114. [40] Su N, Burnett W C, MacIntyre H L, et al. Natural radon and radium isotopes for assessing groundwater discharge into Little Lagoon, AL: Implications for harmful algal blooms[J]. Estuaries and Coasts, 2014, 37(4): 893-910. [41] Garcia-Orellana J, Cochran J K, Bokuniewicz H, et al. Evaluation of Ra-224 as a tracer for submarine groundwater discharge in Long Island Sound (NY)[J]. Geochimica et Cosmochimica Acta, 2014, 141: 314-330. [42] Rodellas V, Garcia-Orellana J, Masque P, et al. Submarine groundwater discharge as a major source of nutrients to the Mediterranean Sea[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112: 3 926-3 930. [43] Kwon E Y, Kim G, Primeau F, et al. Global estimate of submarine groundwater discharge based on an observationally constrained radium isotope model[J]. Geophysical Research Letters, 2014, 41: 8 438-8 444. [44] Lee D R. Device for measuring seepage flux in lakes and estuaries[J]. Limnology and Oceanography, 1977, 22(1): 140-147. [45] Shinn E A, Reich C D, Hickey T D. Seepage meters and Bernoulli’s revenge[J]. Estuaries, 2002, 25(1): 126-132. [46] Shinn E A, Reich C D, Hickey T D. Reply to comments by corbett and cable on our paper, "Seepage meters and Bernoulli’s revenge"[J]. Estuaries, 2003, 26(5): 1 388-1 389. [47] Michael H A, Lubetsky J S, Harvey C F. Characterizing submarine groundwater discharge: A seepage meter study in Waquoit Bay, Massachusetts[J]. Geophysical Research Letters, 2003, 30,doi:10.1029/GL016000. [48] Taniguchi M, Ishitobi T, Saeki K. Evaluation of time-space distributions of submarine groundwater discharge[J]. Ground Water, 2005, 43: 336-342. [49] Lee C M, Jiao J J, Luo X, et al. Estimation of submarine groundwater discharge and associated nutrient fluxes in Tolo Harbour, Hong Kong[J]. Science of the Total Environment, 2012, 433: 427-433. [50] Li H L, Boufadel M C, Weaver J W. Tide induced seawater-groundwater circulation in shallow beach aquifer[J]. Journal of Hydrology, 2008, 352(1/2): 211-224. [51] Heiss J W, Michael H A. Saltwater-freshwater mixing dynamics in a sandy beach aquifer over tidal, spring-neap, and seasonal cycles[J]. Water Resources Research, 2014, 50(8): 6 747-6 766. [52] Boufadel M C, Suidan M T, Venosa A D. A numerical model for density-and-viscosity-dependent flows in two-dimensional variably-saturated porous media[J]. Journal of Contaminant Hydrology, 1999, 36(1/2): 1-20. [53] Moore W S. Sources and fluxes of submarine groundwater discharge delineated by radium isotopes[J]. Biogeochemistry, 2003, 66(1/2): 75-93. [54] Guo Zhanrong, Huang Lei, Liu Huatai. The estimation of submarine inputs of groundwater to a coastal bay using radium isotopes[J]. Acta Geoscientia Sinica, 2008, 29: 647-652.[郭占荣, 黄磊,刘花台. 镭同位素示踪隆教湾的海底地下水排泄[J]. 地球学报, 2008, 29: 647-652.] [55] Chanyotha S, Kranrod C, Burnett W C, et al. Prospecting for groundwater discharge in the canals of Bangkok via natural radon and thoron[J]. Journal of Hydrology, 2014, 519: 1 485-1 492. [56] Xu B C, Xia D, Burnett W C, et al. Natural 222 Rn and 220 Rn indicate the impact of the Water-Sediment Regulation Scheme (WSRS) on submarine groundwater discharge in the Yellow River Estuary, China[J]. Applied Geochemistry, 2014, 51: 79-85. [57] Cable J E, Burnett W C, Chanton J P, et al. Estimating groundwater discharge into the northeastern Gulf of Mexico using radon-222[J]. Earth and Planetary Science Letters, 1996, 144(3/4): 591-604. [58] Burnett W C, Dulaiova H. Estimating the dynamics of groundwater input into the coastal zone via continuous radon-222 measurements[J]. Journal of Environmental Radioactivity, 2003, 69(1/2): 21-35. [59] Wu Z, Zhou H, Zhang S, et al. Using Rn-222 to estimate Submarine Groundwater Discharge (SGD) and the associated nutrient fluxes into Xiangshan Bay, East China Sea[J]. Marine Pollution Bulletin, 2013, 73(1): 183-191. [60] Bokuniewicz H, Buddemeier R, Maxwell B, et al. The typological approach to Submarine Groundwater Discharge (SGD)[J]. Biogeochemistry, 2003, 66: 145-158. [61] Su Ni. Tracing Coastal Water Mixing Processes and Submarine Groundwater Discharge by Radium Isotopes[D]. Shanghai: East China Normal University, 2013.[苏妮. 镭同位素示踪的近岸水体混合和海底地下水排泄[D]. 上海: 华东师范大学, 2013.] [62] Moore W S. Seasonal distribution and flux of radium isotopes on the southeastern US continental shelf[J]. Journal of Geophysical Research—Oceans, 2007, 112(C10), doi:10.1029/2007JC004199. [63] McCoy C A, Corbett D R, Cable J E, et al. Hydrogeological characterization of southeast coastal plain aquifers and groundwater discharge to Onslow Bay, North Carolina (USA)[J]. Journal of Hydrology, 2007, 339(3/4): 159-171. [64] Ganju N K. A novel approach for direct estimation of fresh groundwater discharge to an estuary[J]. Geophysical Research Letters, 2011, 38, doi:10.1029/2011GL047718. [65] Windom H L, Moore W S, Niencheski L F H, et al. Submarine groundwater discharge: A large, previously unrecognized source of dissolved iron to the South Atlantic Ocean[J]. Marine Chemistry,2006, 102(3/4): 252-266. [66] Breier J A, Edmonds H N. High 226 Ra and 228 Ra activities in Nueces Bay, Texas indicate large submarine saline discharges[J]. Marine Chemistry, 2007, 103(1/2): 131-145. [67] Beck A J, Rapaglia J P, Cochran J K, et al. Submarine groundwater discharge to Great South Bay, NY, estimated using Ra isotopes[J]. Marine Chemistry, 2008, 109: 279-291. [68] Crusius J, Berg P, Koopmans D J, et al. Eddy correlation measurements of submarine groundwater discharge[J]. Marine Chemistry, 2008, 109: 77-85. [69] Dulaiova H, Burnett W C, Chanton J P, et al. Assessment of groundwater discharges into West Neck Bay, New York, via natural tracers[J]. Continental Shelf Research, 2006, 26(16): 1 971-1 983. [70] Dulaiova H, Gonneea M E, Henderson P B, et al. Geochemical and physical sources of radon variation in a subterranean estuary—Implications for groundwater radon activities in submarine groundwater discharge studies[J]. Marine Chemistry, 2008, 110(1/2): 120-127. [71] Smith C G, Cable J E, Martin J B, et al. Evaluating the source and seasonality of submarine groundwater discharge using a radon-222 pore water transport model[J]. Earth and Planetary Science Letters, 2008, 273(3/4): 312-322. [72] Santos I R, Dimova N, Peterson R N, et al. Extended time series measurements of submarine groundwater discharge tracers ( 222 Rn and CH 4 ) at a coastal site in Florida[J]. Marine Chemistry, 2009, 113: 137-147. [73] Swarzenski P W, Izbicki J A. Coastal groundwater dynamics off Santa Barbara, California: Combining geochemical tracers, electromagnetic seepmeters, and electrical resistivity[J]. Estuarine Coastal and Shelf Science, 2009, 83(1): 77-89. [74] McCoy C, Viso R, Peterson R N, et al. Radon as an indicator of limited cross-shelf mixing of submarine groundwater discharge along an open ocean beach in the South Atlantic Bight during observed hypoxia[J]. Continental Shelf Research, 2011, 31(12): 1 306-1 317. [75] Null K A, Corbett D R, DeMaster D J, et al. Porewater advection of ammonium into the Neuse River Estuary, North Carolina, USA[J]. Estuarine, Coastal and Shelf Science, 2011, 95: 314-325. [76] Stachelhaus S L, Moran S B, Kelly R P. An evaluation of the efficacy of radium isotopes as tracers of submarine groundwater discharge to southern Rhode Island’s coastal ponds[J]. Marine Chemistry, 2012, 130/131:49-61. [77] Zhang Quan, Qiu Hanxue, Zhu Chenjian,et al. Study on terrestrial nitrate flux to Wanggezhuang Bay[J]. Marine Environmental Science, 2002, 21(2):14-18.[张权, 邱汉学, 祝陈坚,等. 王哥庄湾陆源硝酸盐氮输送通量研究[J]. 海洋环境科学, 2002, 21(2): 14-18.] [78] Qiu Hanxue, Zheng Xilai, Zhang Xiaolong, et al. Numerical analysis of groundwater discharge fluxes to ocean from the Huanghe Farm area[J]. Marine Geology Letters,2003, 19(3): 28-33.[邱汉学, 郑西来, 张效龙, 等. 黄河农场地区地下水入海通量的数值分析[J], 海洋地质动态, 2003, 19(3): 28-33.] [79] Guo Zhanrong, Huang Yipu. Estimation of submarine groundwater discharge to ocean from Xiamen Island[J]. Water Resources Research, 2003, 24(l): 28-29.[郭占荣, 黄奕普. 厦门岛地下水入海通量估算[J], 水资源研究, 2003, 24(l): 28-29.] [80] Zhu Xinjun, Liu Guanqun, Wang Shuying, et al. Estimation of groundwater and nutrients flux from Baisha Watershed into Jiaozhou Bay[J]. Periodical of Ocean University of China, 2005, 35(l): 67-72.[朱新军, 刘贯群, 王淑英, 等. 白沙河流域地下水及营养盐向海湾输送[J]. 中国海洋大学学报, 2005, 35(l): 67-72.] [81] Liao Xiaoqing, Liu Guanqun, Yuan Ruiqiang, et al. FEFLOW software numerical simulation of groundwater discharge flux to the sea from the Yellow River Farm area[J]. Advances in Marine Science, 2005, 23(4): 446-451.[廖小青, 刘贯群, 袁瑞强, 等. 黄河农场地区地下水入海量FEFLOW软件数值模拟[J]. 海洋科学进展, 2005, 23(4): 446-451.] [82] Liu Guanqun, Ye Yuling, Yuan Ruiqiang, et al. Transport of groundwater and nutrients from land into Jiaozhou Bay[J]. Marine Environmental Science, 2007, 26(6): 510-513.[刘贯群, 叶玉玲, 袁瑞强, 等. 近年胶州湾陆源SGD及其营养盐输送[J]. 海洋环境科学, 2007, 26(6) : 510-513.] [83] Guo Zhanrong, Huang Lei, Liu Huatai. The estimation of submarine inputs of groundwater to a coastal bay using radium isotopes[J]. Acta Geoscientica Sinica, 2008, 29: 647-652.[郭占荣, 黄磊,刘花台. 镭同位素示踪隆教湾的海底地下水排泄[J]. 地球学报, 2008, 29: 647-652.] [84] Su Ni, Zhang Lei, Zhang Yaoling, et al. Groundwater discharge in coastal zones[J]. Hydrogeology and Engineering Geology, 2009, 3: 45-50.[苏妮, 张磊, 张耀玲, 等. 沿岸地下水排放通量[J]. 水文地质工程地质, 2009, 3: 45-50.] [85] Guo Zhanrong, Huang Lei, Yuan Xiaojian, et al. Estimating submarine groundwater discharge to the Jiulong River estuary using Ra isotopes[J]. Advances in Water Science, 2011, 22(1): 118-125.[郭占荣, 黄磊, 袁晓健, 等. 用镭同位素评价九龙江河口区的地下水输入[J]. 水科学进展, 2011, 22(1): 118-125.] [86] Gu H, Moore W S, Zhang L, et al. Using radium isotopes to estimate the residence time and the contribution of Submarine Groundwater Discharge (SGD) in the Changjiang effluent plume, East China Sea[J]. Continental Shelf Research, 2012, 35: 95-107. [87] Xu B C, Burnett W C, Dimova N, et al. Hydrodynamics in the Yellow River Estuary via radium isotopes: Ecological perspectives[J]. Continental Shelf Research, 2013, 66: 19-28. [88] Peterson R N, Burnett W C, Taniguchi M, et al. Radon and radium isotope assessment of submarine groundwater discharge in the Yellow River Delta, China[J]. Journal of Geophysical Research—Oceans, 2008, 113(C9),doi:10.1029/2008JC004776. [89] Guo Zhanrong, Ma Zhiyong, Yuan Xiaojie, et al. Tracing Submarine groundwater discharge and associated nutrient fluxes into Jiaozhou Bay by continuous 222 Rn measurements[J]. Earth Science—Journal of China University of Geosciences, 2013, 38(5): 1 073-1 080.[郭占荣, 马志勇, 袁晓婕, 等. 采用222Rn示踪胶州湾的海底地下水排泄及营养盐输入[J]. 地球科学——中国地质大学学报, 2013, 38(5): 1 073-1 080.] [90] Guo Zhanrong, Li Kaipei, Yuan Xiaojie, et al. Assessment of submarine groundwater discharge into the Wuyuan Bay via continuous Radon-222 measurements[J]. Advances in Water Science, 2012, 23(2): 263-270.[郭占荣, 李开培, 袁晓婕, 等. 用氡-222评价五缘湾的地下水输入[J]. 水科学进展, 2012, 23(2): 263-270.] [91] Huang Lei. Researeh on Groundwater Discharge into Jiulongjiang Estuary[D]. Xiamen: Xiamen University, 2009.[黄磊. 九龙江河口区的地下水输入研究[D]. 厦门: 厦门大学, 2009.] [92] Luo X, Jiao J J, Moore W S, et al. Submarine groundwater discharge estimation in an urbanized embayment in Hong Kong via short-lived radium isotopes and its implication of nutrient loadings and primary production[J]. Marine Pollution Bulletin, 2014, 82(1/2): 144-154. [93] Su N, Du J Z, Moore W S, et al. An examination of groundwater discharge and the associated nutrient fluxes into the estuaries of eastern Hainan Island, China using 226 Ra[J]. Science of the total environment, 2011, 409(19): 3 909-3 918. [94] Ji T, Du J Z, Moore W S, et al. Nutrient inputs to a Lagoon through submarine groundwater discharge: The case of Laoye Lagoon, Hainan, China[J]. Journal of Marine Systems, 2013, 111/112: 253-262. [95] Liu Q, Dai M, Chen W, et al. How significant is submarine groundwater discharge and its associated dissolved inorganic carbon in a river-dominated shelf system?[J]. Biogeosciences, 2012, 9(5): 1 777-1 795. [96] Garrison G H, Glenn C R, McMurtry G M. Measurement of submarine groundwater discharge in Kahana Bay, O’ahu, Hawai’i[J]. Limnology and Oceanography, 2003, 48(2): 920-928. [97] Charette M A, Buesseler K O. Submarine groundwater discharge of nutrients and copper to an urban subestuary of Chesapeake bay (Elizabeth River)[J]. Limnology and Oceanography, 2004, 49(2): 376-385. [98] Hu C, Muller-Karger F E, Swarzenski P W. Hurricanes, submarine groundwater discharge, and Florida’s red tides[J]. Geophysical Research Letters, 2006, 33(11),doi:10.1029/2005GL025449. [99] Lee Y W, Kim G. Linking groundwater-borne nutrients and dinoflagellate red-tide outbreaks in the southern sea of Korea using a Ra tracer[J]. Estuarine, Coastal and Shelf Science, 2007, 71: 309-317. [100] Shaw T J, Moore W S, Kloepfer J, et al. The flux of barium to the coastal waters of the southeastern USA: The importance of submarine groundwater discharge[J]. Geochimica et Cosmochimica Acta, 1998, 62: 3 047-3 054 [101] Bone S E, Charette M A, Lamborg C H, et al. Has submarine groundwater discharge been overlooked as a source of mercury to coastal waters?[J]. Environmental Science & Technology, 2007, 41(9): 3 090-3 095. [102] Santos I R, Burnett W C, Dittmar T, et al. Tidal pumping drives nutrient and dissolved organic matter dynamics in a Gulf of Mexico subterranean estuary[J]. Geochimica et Cosmochimica Acta, 2009, 73:1 325-1 339. [103] Burnett W C, Wattayakom G, Taniguchi M, et al. Groundwater-derived nutrient inputs to the Upper Gulf of Thailand[J].Continental Shelf Research, 2007, 27: 176-190. [104] Li Hailong, Wan Li, Jiao Jiujiu. Hot issues in the study of coastal hydrogeology[J]. Advances in Earth Science, 2011, 26(7): 685-694.[李海龙, 万力, 焦赳赳. 海岸带水文地质学研究中的几个热点问题[J]. 地球科学进展, 2011, 26(7): 685-694.] [105] Committee on Chinese Groundwater Science. Opportunities and Challenges in Chinese Groundwater Science[M]. Beijing: Science Press, 2009.[中国地下水科学战略研究小组.中国地下水科学的机遇与挑战[M].北京:科学出版社,2009.] [106] Liu Huatai, Guo Zhanrong. A review on submarine groundwater discharge[J]. Advances in Earth Science, 2014, 29(7): 774-785.[刘花台, 郭占荣. 海底地下水排泄的研究进展[J]. 地球科学进展, 2014, 29(7): 774-785.] [107] Qin Ronggao, Cao Guangzhu, Wu Yanqing. Review of the study of groundwater flow and solute transport in heterogeneous aquifer[J]. Advances in Earth Science, 2014, 29(1): 30-41.[覃荣高, 曹广祝, 仵彦卿. 非均质含水层中渗流与溶质运移研究进展[J]. 地球科学进展, 2014, 29(1): 30-41.] |