地球科学进展 ›› 2016, Vol. 31 ›› Issue (8): 849 -857. doi: 10.11867/j.issn.1001-8166.2016.08.0849.

上一篇    下一篇

滇池构造漏水隐患及水安全
张虎才( )   
  1. 云南师范大学旅游与地理科学学院,高原湖泊生态与全球变化重点实验室,云南 昆明 650500
  • 收稿日期:2016-07-18 修回日期:2016-08-02 出版日期:2016-08-20
  • 基金资助:
    云南省领军人才项目“云南高原湖泊演化与水安全研究”(编号:2015HA024);云南省高端人才引进项目“云南(云贵高原)湖泊记录与生态环境及可持续发展研究”(编号:2010CI111)资助

The Potential Endangers of the Tectonic Lake Water Leakage from Dianchi and Water Security

Hucai Zhang( )   

  1. The Plateau Lake Ecology and Global Chang, School of Tourism and Physical Geographic Science, Yunnan Normal University, Kunming 650500, China
  • Received:2016-07-18 Revised:2016-08-02 Online:2016-08-20 Published:2016-08-20
  • Supported by:
    Project supported by the Yunnan Provincial Government Leading Scientist Program “Lake evolution and water security in Yunnan Plateau”(No.2015HA02);The Yunnan Provincial Government Senior Talent Program “The lake records and ecological environments in Yuanan and water security”(No.2010CI111)

滇池不仅是云贵高原最大的浅水湖泊,对于维系昆明及周边地区生态环境意义重大,同时也是储有超过15亿m3高度富营养化的劣五类水质的巨型水体。滇池湖泊污染与富营养化治理将是一项长期艰巨的工作,其高度富营养化的劣质水体灾害性扩散将产生重大的生态环境影响。历史记录、水下地形、区域地质构造和地层沉积年代学研究均证明滇池至少于1764年曾发生过非气候因素的构造漏水事件,可能与滇池中部2个漏斗或其中之一相关。从漏斗底部地形形态和沉积物变形特征分析,其中一个处于於堵至崩塌阶段,另一个却处在休眠至缓慢发育阶段,一旦由于水位上升水体压力增大、或地震诱发地下断裂通道(包括喀斯特溶洞)贯通,则可发生灾害性构造漏水事件,滇池高度富营养化污水就必然扩散或有可能通过地下通道注入抚仙湖,引起联动生态环境效应,直接造成占国家9%以上战略淡水资源的深度长期污染、威胁国家水安全。开展滇池漏斗水流变化检测预警、通过地球物理探测确定地下破碎带或通道、采取工程措施堵塞漏水通道刻不容缓。

Dianchi or Lake Dian is the largest shallow water lake on the Yunnan-Guizhou Plateau, which is not only crucial to maintain the ecological environments of Kunming, the famous city with four springs, but also contains almost 1.5×109 m3 highly polluted water. The management of the lake pollution and eutrophication will be a long-lasting hard work and the sudden diffusion of such highly polluted water can lead to catastrophic eco-environmental problems. Based on the historical documents, underwater topographic features, regional geological tectonics and the chronology of the sediments, it can be concluded that at one time the water leaked out in Dianchi, which is in consistent with the historical record of 1764 AD. This water leak event resulted in two funnels in the center of Dianchi. The sedimentary feature and the deformation properties indicated that the slope of one funnel collapsed, which means it was blocked, but the other one was under development or in dormancy. When the pressure induced from the water level changed or the earthquakes occurred, the underwater channel could be open or connected, a catastrophic water leakage might be induced. The highly polluted lake water would possibly flow to Lake Fuxian and pollute almost 9% national strategic fresh water resource, resulting in an eco-environmental event and endangering the national water security. Therefore, to monitor the water flowing situation, detect the position and direction of the channel, block the channel and prevent possible lake water leakage are the priority and urgent measurements at present.

中图分类号: 

图1 滇池水深与漏斗的关系
(a)滇池及漏水点与断裂构造的关系及湖泊等深线;(b)漏水后滇池的范围和冲洪积发育演化过程
Fig.1 The relationship between the water depth and the funnels
(a)Dianchi, the lake water leakage site and their relationships with the main faults;(b)The remain scope of Dianchi after water leakage and the development process of the fluvial-alluvial fans
图2 滇池漏斗形态及深度变化(A)、沿NNE-SSW测线获得的浅成剖面和漏斗断面(B)
DC1,DC4,DC5,DC6为短岩心提取点(其中DC1在DC6以南,出本图范围)
Fig.2 The patterns and depth changes of the funnels in Dianchi (A), the profile along the NNE-SSW (B)
DC1, DC4, DC5 and DC6 indicate the coring sites(among them DC1 and DC6 are not shown here because they are out the scope of the figure)
表1 滇池漏斗附近短岩心信息及描述(位置参见 图2 )
Table 1 The information for coring sites and their description (also see Fig.2 )
图3 226Ra, 210Pb ( 210Pb ex= 210Pb- 226Ra) 和 137Cs活度及滇池沉积岩心(DC1) 120Pb- 137Cs年龄
Fig.3 The activities of 226Ra, 210Pb ( 210Pb ex= 210Pb- 226Ra), and 137Cs and possible 120Pb- 137Cs time series of the DC1 core from Dianchi
图4 226Ra, 210Pb ( 210Pb ex= 210Pb- 226Ra) 和 137Cs活度及滇池沉积岩心(DC4) 120Pb- 137Cs年代序列
Fig.4 The activities of 226Ra, 210Pb ( 210Pb ex= 210Pb- 226Ra), and 137Cs and possible 120Pb- 137Cs time series of the DC4 core from Dianchi
图5 滇池漏斗附近短岩心DC1,DC4,DC5,DC6碳酸盐、有机质含量变化及其AMS 14C测年
· 为 120Pb- 137Cs年龄
Fig.5 The CaCO 3 and TOC contents of core DC1, DC4, DC5 and DC6, and AMS 14C dates
· is 120Pb- 137Cs ages
表2 滇池漏斗附近短岩心AMS 14C测年结果
Table 2 AMS 14C dates of the short cores
图6 滇池漏斗(M)底部形态与沉积变化
Fig.6 The bottom of the funnel M and the sediment movements
[1] Wang Hongmei, Chen Yan.Change trend of eutrophication of Dianchi Lake and reason analysis in recent 20 years[J]. Environmental Science Survey,2009, 28(3): 57-60.
[王红梅, 陈燕. 滇池近20a富营养化变化趋势及原因分析[J]. 环境科学导刊, 2009, 28(3): 57-60.]
[2] Zhang H C.Can water hyacinth clean highly polluted waters?[J].Journal of Environmental Protection, 2012, 3:340-341.
[3] Li Zhongjie, Zheng Yixin, Zhang Dawei, et al.Impacts of 20-year socio-economic development on aquatic environment of Lake Dianchi Basin[J]. Journal of Lake Sciences, 2012, 24(6): 875-882.
[李中杰, 郑一新, 张大为, 等.滇池流域近20年社会经济发展对水环境的影响[J]. 湖泊科学, 2012, 24(6): 875-88.]
[4] He Jia, Xu Xiaomei, Yang Yan, et al.Problems and affects of comprehensive management of water environment in Lake Dianchi[J]. Journal of Lake Sciences, 2015, 27(2):195-199.
[何佳, 徐晓梅, 杨艳, 等.周鸿斌.滇池水环境综合治理成效与存在问题[J]. 湖泊科学, 2015, 27(2):195-199.]
[5] Yang Yuda.The preliminary study in reconstructing the mean winter temperature in Kunming during 1721-1900 A.D.[J]. Journal of Chinese Historical Geography, 2007, 22(1): 17-31.
[杨煜达. 清代昆明地区(1721—1900年) 冬季平均气温序列的重建与初步分析[J]. 中国历史地理论丛, 2007, 22(1): 17-31.]
[6] Yang Y D, Man Z M, Zheng J Y.Reconstruction of the starting time series of rainy season in Yunnan and the evolvement of summer monsoon during 1711-1982[J].Journal of Geographical Sciences, 2007,doi:10.1007/s11442-007-0212-9.
[7] Chen Zongyu.The Pandect of Yunnan Clinate[M]. Beijing: Meteorological Press, 2001:91-95.
[陈宗瑜. 云南气候总论[M]. 北京:气象出版社, 2001:91-95.]
[8] CNMA (Chinese National Meteorological Adiministration).Yearly Charts of Dryness/Wetness in China for the Last 500-year Period (A Brief Introduction)[Z]. Beijing: Chinese Cartographic Publishing House, 1981.
[中国气象局气象科学研究院. 中国近500年旱涝分布图集[Z]. 北京: 地图出版社, 1981.]
[9] Xie Mingen, Cheng Jiangang, Fan Bo.Spatiotemporal distribution features of meteorological disasters in Yunnan[J]. Journal of Natural Disasters, 2004, 13(5): 40-47.
[解明恩, 程建刚, 范菠.云南气象灾害的时空分布规律[J]. 自然灾害学报, 2004, 13(5): 40-47.]
[10] Liu Dongsheng, Zhang Hucai.Reconstruction the historical drought and flood disasters from 1322 to 2013 AD in Kunming[J]. Yunnan Geographic Environment Research, 2015,27(6):8-14,32.
[刘东升, 张虎才. 昆明1322年至2013年旱涝历史的重建[J]. 云南地理研究, 2015,27(6):8-14,32.]
[11] Tao Yun, Zhang Wancheng, Duan Changchun, et al.Climatic causes of continuous drought over Yunnan Province form 2009 to 2012[J]. Journal of Yunnan University(Natural Sciences), 2014,36(6):866-874.
[陶云, 张万城, 段长春, 等. 云南2009—2012年4年连旱的气候成因研究[J]. 云南大学学报:自然科学版, 2014,36(6):866-874.]
[12] Yu Xixian.Preliminary study on the Historical geography of Dianchi Lake[J]. Yunnan Geographic Environment Research, 1999, 11(1): 7-15.
[于希贤. 滇池历史地理初步研究[J]. 云南地理环境研究, 1999, 11(1): 7-15.]
[13] Hu Yichang, Dong Wenjie, He Yong.Progress of the study of extreme weather and climate events at the beginning of the Twenty First Century[J]. Advances in Earth Science, 2007, 22(10):1 066-1 075.
[胡宜昌,董文杰,何勇.21世纪初极端天气气候事件研究进展[J]. 地球科学进展,2007, 22(10):1 066-1 075.]
[14] Tang Qiuhong, Huang Zhongwei, Liu Xingcai, et al.Impacts of human water use on the large-scale terrestrial water cycle[J]. Advances in Earth Science,2015, 30(10): 1 091-1 099.
[汤秋鸿,黄忠伟,刘星才,等.人类用水活动对大尺度陆地水循环的影响[J]. 地球科学进展,2015, 30(10):1 091-1 099.]
[15] Xia Jun, Liu Chunzhen, Ren Guoyu.Opportunity and challenge of the climate change impact on the water resource of China[J].Advances in Earth Science, 2011, 26(1):1-12.
[夏军, 刘春蓁,任国玉.气候变化对我国水资源影响研究面临的机遇与挑战[J]. 地球科学进展,2011, 26(1):1-12.]
[16] Copley A.Kinematics and dynamics of the southeastern margin of the Tibetan Plateau[J]. Geophysical Journal Interational, 2008, 174:1 081-1 100,doi: 10.1111/j.1365-246X.2008.03853.x.
[17] Molnar P, Lyon-Caen H.Fault plane solutions of earthquakes and active tectonics of the Tibetan Plateau and its margins[J]. Geophysical Journal Interational, 1989, 99:123-153.
[1] 范小杉. 国际社会对生态系统服务研究误区的研讨综述[J]. 地球科学进展, 2021, 36(6): 616-624.
[2] 邓伟, 赵伟, 刘斌涛, 南希, 孔博. 基于“一带一路”的南亚水安全与对策[J]. 地球科学进展, 2018, 33(7): 687-701.
[3] 李强, 蒲俊兵, 黄妮, 杜红梅, 祁向坤, 王力, 杨慧. 断陷盆地生态环境地质分异及石漠化演变机理的研究途径[J]. 地球科学进展, 2017, 32(9): 899-907.
[4] 张虎才, 常凤琴, 段立曾, 李华勇, 张云鹰, 蒙红卫, 文新宇, 吴汉, 路志明, 毕荣鑫, 张扬, 赵帅营, 康文刚. 滇池水质特征及变化[J]. 地球科学进展, 2017, 32(6): 651-659.
[5] 黄小平, 张景平, 江志坚. 人类活动引起的营养物质输入对海湾生态环境的影响机理与调控原理[J]. 地球科学进展, 2015, 30(9): 961-969.
[6] 符娟林,乔标. 基于模糊物元的城市化生态预警模型及应用[J]. 地球科学进展, 2008, 23(9): 990-995.
[7] 周俊,邓伟,刘伟龙. 沟渠湿地的水文和生态环境效应研究进展[J]. 地球科学进展, 2008, 23(10): 1079-1083.
[8] 马乐宽,李天宏,刘国彬. 基于水土保持的流域生态环境需水研究[J]. 地球科学进展, 2008, 23(10): 1102-1110.
[9] 王宝鉴,宋连春,张强,黄玉霞,杨选雄,韩兰英. 石羊河流域水资源对气候变暖的响应及对生态环境的影响[J]. 地球科学进展, 2007, 22(7): 730-737.
[10] 刘桂禄. 深圳市扩库填海问题研究[J]. 地球科学进展, 2006, 21(6): 658-660.
[11] 程国栋;赵文智. 绿水及其研究进展
[J]. 地球科学进展, 2006, 21(3): 221-228.
[12] 史培军,王静爱,冯文利,叶涛,葛怡,陈婧,刘婧. 中国土地利用/覆盖变化的生态环境安全响应与调控[J]. 地球科学进展, 2006, 21(2): 111-119.
[13] 程国栋,赵文智. 绿水及其研究进展[J]. 地球科学进展, 2006, 21(03): 221-227.
[14] 张济世,康尔泗,赵爱芬,蓝永超;陈仁升. 黑河中游水土资源开发利用现状及水资源生态环境安全分析[J]. 地球科学进展, 2003, 18(2): 207-213.
[15] 杨新,延军平. 陕甘宁接壤区气候暖干化及其生态环境意义[J]. 地球科学进展, 2003, 18(1): 127-132.
阅读次数
全文


摘要