地球科学进展 ›› 2016, Vol. 31 ›› Issue (8): 840 -848. doi: 10.11867/j.issn.1001-8166.2016.08.0840.

上一篇    下一篇

基于Γ函数的祁连山葫芦沟流域湿季小时降水统计特征
王磊( ), 陈仁升 *( ), 宋耀选   
  1. 1.中国科学院寒区旱区环境与工程研究所黑河上游生态—水文试验研究站,甘肃 兰州 730000
    2.中国科学院内陆河生态水文重点实验室,甘肃 兰州 730000
  • 收稿日期:2016-05-10 修回日期:2016-06-28 出版日期:2016-08-20
  • 通讯作者: 陈仁升 E-mail:sdwanglei@lzb.ac.cn
  • 基金资助:
    国家重点基础研究发展计划项目“寒区流域水文过程综合模拟与预估研究”(编号:2013CBA01806);国家自然科学基金项目“黑河流域上游生态水文过程耦合机理及模型研究”(编号:91225302)资助

Study of Statistical Characteristics of wet Season Hourly Rainfall at Hulu Watershed with Γ Function in Qilian Mountains

Lei Wang( ), Rensheng Chen *( ), Yaoxuan Song   

  1. 1.Qilian Alpine Ecology and Hydrology Research Station,Cold and Arid Regions Environmental and Engineering Research Institute, CAS, Lanzhou 730000,China
    2.Key Laboratory of Inland Ecohydrology, CAS,LanZhou 730000,China
  • Received:2016-05-10 Revised:2016-06-28 Online:2016-08-20 Published:2016-08-20
  • Contact: Rensheng Chen E-mail:sdwanglei@lzb.ac.cn
  • Supported by:
    Project supported by the National Basic Research Program of China “Research on estimation and simulation of hydrological process in region”(No.2013CBA01806);The National Natural Science Foundation of China “Coupling mechanism and model of eco-hydrological processes in the upper of Heihe River Basin”(No.91225302)

高山区降水主要集中在湿季(5~9月),湿季小时降水的概率分布统计特征是研究山区降水分布的重要基础。选择祁连山中段典型流域为研究区,使用葫芦沟流域6个观测点2015年5~9月半小时降水数据,采用极大似然法对影响Γ分布函数的形状参数α和尺度参数β进行估计,并且对不同强度降水概率密度分布、累计概率密度以及降水概率与海拔和降水量关系进行分析。结果表明:形状参数α和尺度参数β呈明显负相关,形状参数α与小时平均降水量分布大致相同;在葫芦沟流域,除海拔因素外,局地地形也是影响降水再分配和降水概率分布的重要因素;在该流域,除降水事件增加外, 1~3 mm/h强度降水概率随着海拔增加而增加也是降水量随海拔增加而增加的主要原因。

The probability distribution of the wet season hourly precipitation is the important basis for the study of the precipitation distribution, especially in mountainous areas. Hulu watershed is the study area located in the upper reaches of Heihe River, Qilian Mountains. By adopting the maximum likelihood estimation, the shape parameter α and scale parameter β of 6 stations were obtained with observed wet season (May to September) half hourly data, and different intensity precipitation probability density distribution, cumulative probability density and probability of precipitation and elevation and precipitation relationship were analyzed. The shape parameter α and scale parameter β is significantly negatively correlated, shape parameter α and average hourly precipitation distribution is consistent. Local topography is also an important factor to affect the precipitation redistribution and the probability distribution of precipitation in Hulu watershed. In addition to the increase of precipitation events, the probability of 1~3 mm mm/h precipitation increases with the altitude, which is the main reason for the increase of precipitation with altitude.

中图分类号: 

表1 葫芦沟流域降水观测点信息
Table 1 Introduction of precipitation observation points in Hulu watershed
表2 各观测点参数特征
Table 2 Parameter characteristics of each observation point
图1 观测降水量概率密度与概率密度函数拟合对比
(a),(b),(c),(d),(e),(f)分别表示一号点、二号点、三号点、四号点、大本营、三角洲
Fig.1 Comparison of probability of observed precipitation and probability density function
(a),(b),(c),(d),(e),(f) represent the NO.1, NO.2, NO.3, NO.4,Dabenying, Delta
图2 形状参数 α和小时平均降水量 x ? 分布图
(a),(b)分别表示形状参数 α和小时平均降水量 x ? 分布
Fig.2 The distribution of the shape parameter ( α) and average hourly precipitation ( x ? )
(a),(b)represent the shape parameter ( α) and average hourly precipitation ( x ? ) distribution respectively
图3 观测降水量概率累计与概率密度函数累计对比
(a),(b),(c),(d),(e),(f)分别表示一号点、二号点、三号点、四号点、大本营、三角洲
Fig.3 Comparison of probability of observed precipitation and cumulative probability density
(a),(b),(c),(d),(e),(f) represent the NO.1, NO.2, NO.3, NO.4,Dabenying, Delta
图4 各观测点不同累计概率下小时降水阈值折线图
Fig.4 Precipitation threshold line chart of each observation point under different cumulative probability
表3 不同累计概率下降水阈值统计特征(单位:mm)
Table 3 Statistical characteristics of precipitation threshold under different cumulative probability (unit:mm)
图5 各观测点不同强度降水概率与海拔、降水量关系
Fig.5 The relationships between the precipitation probability of different observation points and the elevation and precipitation
[1] Ye Baisheng, Yang Daqing, Ding Yongjian, et al.A bias-corrected precipitation climatology for China[J]. Acta Geographica Sinica, 2007, 62(1): 3-13.
[叶柏生, 杨大庆, 丁永建, 等. 中国降水观测误差分析及其修正[J]. 地理学报, 2007, 62(1): 3-13.]
[2] Zhao Chuancheng, Ding Yongjian, Ye Baisheng, et al.Spatial distribution of precipitation in Tianshan Mountains and estimation[J]. Advances in Water Science, 2011, 22(3): 315-322.
[赵传成, 丁永建, 叶柏生, 等. 天山山区降水量的空间分布及其估算方法[J]. 水科学进展, 2011, 22(3): 315-322.]
[3] Liu Junfeng, Chen Rensheng, Qing Wenwu,et al.Study on the vertical distribution of precipitation in mountainous regions using TRMM data[J]. Advances in Water Science, 2011, 22(4): 447-454.
[刘俊峰, 陈仁升, 卿文武, 等. 基于TRMM 降水数据的山区降水垂直分布特征[J]. 水科学进展, 2011, 22(4): 447-454.]
[4] Gong D Y, Shi P J, Wang J A.Daily precipitation changes in the semi-arid region over northern China[J]. Journal of Arid Environments, 2004, 59(4): 771-784.
[5] Zhang Q, Xu C Y, Chen Y D, et al.Spatial assessment of hydrologic alteration across the Pearl River Delta, China, and possible underlying causes[J]. Hydrological Processes, 2009, 23(11): 1 565-1 574.
[6] Vlĉek O, Huth R.Is daily precipitation Gamma-distributed? Adverse effects of an incorrect use of the Kolmogorov-Smirnov test[J]. Atmospheric Research, 2009, 93(4): 759-766.
[7] Watterson I G, Dix M R.Simulated changes due to global warming in daily precipitation means and extremes and their interpretation using the gamma distribution[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D13), doi:10.1029/2002JD002928.
[8] Ding Yuguo.Research of universality for Γ distribution model of precipitation[J].Scientia Atmospherica Scinca, 1994, 18(5): 552-560.
[丁裕国. 降水量Γ 分布模式的普适性研究[J]. 大气科学, 1994, 18(5): 552-560.]
[9] Tian Fuyou, Zheng Yongguang, Mao Dongyan, et al.Study on probability distribution of warm season hourly rainfall with Γ distribution[J]. Meteorological Monthly, 2014 (7): 787-795.
[田付友, 郑永光, 毛冬艳, 等. 基于Γ 函数的暖季小时降水概率分布[J]. 气象, 2014 (7): 787-795.]
[10] Wu Hongbao, Wang Panxing, Lin Kaiping.Probability distribution of the maximum amount of daily precipitation in certain days in June and July for Guangxi[J]. Journal of Tropical Meteorology, 2004, 20(5): 586-592.
[吴洪宝, 王盘兴, 林开平. 广西6, 7 月份若干日内最大日降水量的概率分布[J]. 热带气象学报, 2004, 20(5): 586-592.]
[11] Delbari M, Afrasiab P, Jahani S.Spatial interpolation of monthly and annual rainfall in northeast of Iran[J]. Meteorology and Atmospheric Physics, 2013, 122(1/2): 103-113.
[12] Wang Huijun.Preliminary results of the 973 project on the energy and water cycle and their role in extreme climate of China[J]. Advances in Earth Science, 2010, 25(6):563-570.
[王会军. 东亚区域能量和水分循环对我国极端气候影响研究的一些初步进展[J]. 地球科学进展, 2010, 25(6): 563-570.]
[13] Wang Ninglian, He Jianqiao, Jiang Xi,et al.Study on the zone of maximum precipitation in the north slopes of the central Qilian Mountains[J]. Journal of Glaciology and Geocryology, 2009,31(3): 395-403.
[王宁练, 贺建桥, 蒋熹, 等. 祁连山中段北坡最大降水高度带观测与研究[J]. 冰川冻土, 2009,31(3):395-403.]
[14] Chen R S, Song Y X, Kang E S, et al.A cryosphere-hydrology observation system in a small alpine watershed in the Qilian Mountains of China and its meteorological gradient[J]. Arctic, Antarctic, and Alpine Research, 2014, 46(2): 505-523.
[15] Liu Z, Chen R, Song Y, et al.Distribution and estimation of aboveground biomass of alpine shrubs along an altitudinal gradient in a small watershed of the Qilian Mountains, China[J]. Journal of Mountain Science, 2015, 12(4): 961-971.
[16] Chen R, Liu J, Kang E, et al.Precipitation measurement intercomparison in the Qilian Mountains, north-eastern Tibetan Plateau[J]. The Cryosphere, 2015, 9(5): 1 995-2 008.
[17] Zhang Yaocun, Ding Yuguo.A general Gamma probability model for precipitation in various periods[J]. Acta Meteorologica Sinica, 1991, 49(1): 80-84.
[张耀存, 丁裕国. 降水量概率分布的一种 Γ 型通用模式[J]. 气象学报, 1991, 49(1): 80-84.]
[18] Lin Zhiguang.Orographic Precipitation Climatology[M]. Beijing: Science Press, 1995:9-16.
[林之光. 地形降水气象学[J]. 北京:科学出版杜, 1995:9-16.]
[19] Ord K.Estimation methods for models of spatial interaction[J]. Journal of the American Statistical Association,1975, 70(349): 120-126.
[20] Anselin L.Non nested tests on the weight structure in spatial autoregressive models: Some monte carlo results[J]. Journal of Regional Science,1986, 26(2): 267-284.
[21] Anselin L.Lagrange multiplier test diagnostics for spatial dependence and spatial heterogeneity[J]. Geographical Analysis, 1988, 20(1): 1-17.
[22] Thom H C S. A note on the gamma distribution[J]. Monthly Weather Review,1958, 86(4): 117-122.
[23] Wilks D S.Maximum likelihood estimation for the gamma distribution using data containing zeros[J]. Journal of Climate, 1990, 3(12): 1 495-1 501.
[24] Yao Zhensheng.Climate Statistics[M]. Beijing:Science Press, 1965.
[么枕生. 气候统计[M]. 北京:科学出版社, 1965.]
[25] Yao Zhensheng.Climatic Statistics: Statistical Climatology Based Theory.I[M]. Beijing:Science Press, 1984.
[么枕生. 气候统计学基础: 统计气候学理论. I[M]. 北京:科学出版社, 1984.]
[26] Liu Xuehua, Wu Hongbao.Probability distribution of summer daily precipitation in China[J]. Journal of Nanjing Institute of Meteorology, 2006, 29(2): 173-180.
[刘学华, 吴洪宝. 中国夏季雨日降水量的概率分布[J]. 南京气象学院学报, 2006, 29(2): 173-180.]
[27] Lin C Y, Chen C S.A study of orographic effects on mountain-generated precipitation systems under weak synoptic forcing[J]. Meteorology and Atmospheric Physics,2002, 81(1/2): 1-25.
[28] Beniston M.Mountain weather and climate: A general overview and a focus on climatic change in the Alps[J]. Hydrobiologia,2006, 562(1): 3-16.
[29] Tang Maocang.The distribution of precipitation in Mountain Qilian (Nanshan)[J]. Acta Geographica Sinica,1985, 40(4): 323-332.
[汤懋苍. 祁连山区降水的地理分布特征[J]. 地理学报, 1985, 40(4): 323-332.]
[30] Hong Guang, Hu Jifu.A study of the probability distribution models for monthly precipitation in Qingdao[J]. Journal of Ocean University of Qingdao(Natural Science Edition),1995, 25(2): 153-161.
[洪光, 胡基福. 青岛月降水量 Г 分布的统计特征[J]. 青岛海洋大学学报: 自然科学版, 1995, 25(2): 153-161.]
[31] Garrett C, Müller P. Supplement to extreme events[J]. Bulletin of the American Meteorological Society, 2008, 89(11): ES45-ES56.
[32] Gemmer M, Fischer T, Jiang T, et al.Trends in precipitation extremes in the Zhujiang River Basin, South China[J]. Journal of Climate,2011, 24(3): 750-761.
[1] 王澄海, 张晟宁, 张飞民, 李课臣, 杨凯. 论全球变暖背景下中国西北地区降水增加问题[J]. 地球科学进展, 2021, 36(9): 980-989.
[2] 王忠静,石羽佳,张腾. TRMM遥感降水低估还是高估中国大陆地区的降水?[J]. 地球科学进展, 2021, 36(6): 604-615.
[3] 李耀辉, 孟宪红, 张宏升, 李忆平, 王闪闪, 沙莎, 莫绍青. 青藏高原—沙漠的陆—气耦合及对干旱影响的进展及其关键科学问题[J]. 地球科学进展, 2021, 36(3): 265-275.
[4] 陈仁升, 沈永平, 毛炜峄, 张世强, 吕海深, 刘永强, 刘章文, 房世峰, 张伟, 陈春艳, 韩春坛, 刘俊峰, 赵求东, 郝晓华, 李如琦, 秦艳, 黄维东, 赵成先, 王书峰. 西北干旱区融雪洪水灾害预报预警技术:进展与展望[J]. 地球科学进展, 2021, 36(3): 233-244.
[5] 高艳红,许建伟,张萌,姜凤友. 中国 400 mm等降水量变迁与干湿变化研究进展[J]. 地球科学进展, 2020, 35(11): 1101-1112.
[6] 王鹏,邓红卫. 基于 GISLogistic回归模型的洪涝灾害区划研究[J]. 地球科学进展, 2020, 35(10): 1064-1072.
[7] 谢鑫昌,杨云川,田忆,廖丽萍,韦钧培,周津羽,陈立华. 广西降水非均匀性多尺度特征与综合评价[J]. 地球科学进展, 2019, 34(11): 1152-1164.
[8] 闫昕旸,张强,闫晓敏,王胜,任雪塬,赵福年. 全球干旱区分布特征及成因机制研究进展[J]. 地球科学进展, 2019, 34(8): 826-841.
[9] 蒋诗威,周鑫. 中国东南地区中世纪暖期和小冰期夏季风降水研究进展[J]. 地球科学进展, 2019, 34(7): 697-705.
[10] 尤元红,黄春林,张莹,侯金亮. Noah-MP模型中积雪模拟对参数化方案的敏感性评估[J]. 地球科学进展, 2019, 34(4): 356-365.
[11] 黄平, 周士杰. 全球变暖下热带降水变化研究回顾与挑战 *[J]. 地球科学进展, 2018, 33(11): 1181-1192.
[12] 黄平, 周士杰. 全球变暖下热带降水变化研究回顾与挑战[J]. 地球科学进展, 0, (): 1-.
[13] 张晓闻, 臧淑英, 孙丽. 近40年东北地区积雪日数时空变化特征及其与气候要素的关系[J]. 地球科学进展, 2018, 33(9): 958-968.
[14] 肖雄新, 张廷军. 基于被动微波遥感的积雪深度和雪水当量反演研究进展[J]. 地球科学进展, 2018, 33(6): 590-605.
[15] 陈亮, 段建平, 马柱国. 大气环流形势客观分型及其与中国降水的联系[J]. 地球科学进展, 2018, 33(4): 396-403.
阅读次数
全文


摘要