地球科学进展 ›› 2016, Vol. 31 ›› Issue (8): 840 -848. doi: 10.11867/j.issn.1001-8166.2016.08.0840.

研究论文 上一篇    下一篇

基于Γ函数的祁连山葫芦沟流域湿季小时降水统计特征
王磊, 陈仁升 *, 宋耀选   
  1. 1.中国科学院寒区旱区环境与工程研究所黑河上游生态—水文试验研究站,甘肃 兰州 730000;
    2.中国科学院内陆河生态水文重点实验室,甘肃 兰州 730000
  • 收稿日期:2016-05-10 修回日期:2016-06-28 出版日期:2016-08-20
  • 通讯作者: 陈仁升(1974-),男,山东沂水人,研究员,主要从事寒区水文学研究.E-mail:sdwanglei@lzb.ac.cn
  • 基金资助:
    国家重点基础研究发展计划项目“寒区流域水文过程综合模拟与预估研究”(编号:2013CBA01806); 国家自然科学基金项目“黑河流域上游生态水文过程耦合机理及模型研究”(编号:91225302)资助

Study of Statistical Characteristics of wet Season Hourly Rainfall at Hulu Watershed with Γ Function in Qilian Mountains

Wang Lei, Chen Rensheng *, Song Yaoxuan   

  1. 1.Qilian Alpine Ecology and Hydrology Research Station,Cold and Arid Regions Environmental and Engineering Research Institute, CAS, Lanzhou 730000,China;
    2.Key Laboratory of Inland Ecohydrology, CAS,LanZhou 730000,China
  • Received:2016-05-10 Revised:2016-06-28 Online:2016-08-20 Published:2016-08-20
  • Contact: Chen Rensheng(1974-), male, Yishui City, Shandong Province, Professor. Research areas include cold region hydrology.E-mail:sdwanglei@lzb.ac.cn
  • Supported by:
    Project supported by the National Basic Research Program of China “Research on estimation and simulation of hydrological process in region”(No.2013CBA01806); The National Natural Science Foundation of China “Coupling mechanism and model of eco-hydrological processes in the upper of Heihe River Basin”(No.91225302)
高山区降水主要集中在湿季(5~9月),湿季小时降水的概率分布统计特征是研究山区降水分布的重要基础。选择祁连山中段典型流域为研究区,使用葫芦沟流域6个观测点2015年5~9月半小时降水数据,采用极大似然法对影响Γ分布函数的形状参数 α和尺度参数 β进行估计,并且对不同强度降水概率密度分布、累计概率密度以及降水概率与海拔和降水量关系进行分析。结果表明:形状参数 α和尺度参数 β呈明显负相关,形状参数α与小时平均降水量分布大致相同;在葫芦沟流域,除海拔因素外,局地地形也是影响降水再分配和降水概率分布的重要因素;在该流域,除降水事件增加外, 1~3 mm/h强度降水概率随着海拔增加而增加也是降水量随海拔增加而增加的主要原因。
The probability distribution of the wet season hourly precipitation is the important basis for the study of the precipitation distribution, especially in mountainous areas. Hulu watershed is the study area located in the upper reaches of Heihe River, Qilian Mountains. By adopting the maximum likelihood estimation, the shape parameter α and scale parameter β of 6 stations were obtained with observed wet season (May to September) half hourly data, and different intensity precipitation probability density distribution, cumulative probability density and probability of precipitation and elevation and precipitation relationship were analyzed. The shape parameter α and scale parameter β is significantly negatively correlated, shape parameter α and average hourly precipitation distribution is consistent. Local topography is also an important factor to affect the precipitation redistribution and the probability distribution of precipitation in Hulu watershed. In addition to the increase of precipitation events, the probability of 1~3 mm mm/h precipitation increases with the altitude, which is the main reason for the increase of precipitation with altitude.

中图分类号: 

[1] Ye Baisheng, Yang Daqing, Ding Yongjian, et al . A bias-corrected precipitation climatology for China[J]. Acta Geographica Sinica , 2007, 62(1): 3-13.
. 地理学报, 2007, 62(1): 3-13.]
[2] Zhao Chuancheng, Ding Yongjian, Ye Baisheng, et al . Spatial distribution of precipitation in Tianshan Mountains and estimation[J]. Advances in Water Science , 2011, 22(3): 315-322.
. 水科学进展, 2011, 22(3): 315-322.]
[3] Liu Junfeng, Chen Rensheng, Qing Wenwu, et al . Study on the vertical distribution of precipitation in mountainous regions using TRMM data[J]. Advances in Water Science , 2011, 22(4): 447-454.
. 水科学进展, 2011, 22(4): 447-454.]
[4] Gong D Y, Shi P J, Wang J A. Daily precipitation changes in the semi-arid region over northern China[J]. Journal of Arid Environments , 2004, 59(4): 771-784.
[5] Zhang Q, Xu C Y, Chen Y D, et al . Spatial assessment of hydrologic alteration across the Pearl River Delta, China, and possible underlying causes[J]. Hydrological Processes , 2009, 23(11): 1 565-1 574.
[6] Vlĉek O, Huth R. Is daily precipitation Gamma-distributed? Adverse effects of an incorrect use of the Kolmogorov-Smirnov test[J]. Atmospheric Research , 2009, 93(4): 759-766.
[7] Watterson I G, Dix M R. Simulated changes due to global warming in daily precipitation means and extremes and their interpretation using the gamma distribution[J]. Journal of Geophysical Research : Atmospheres , 2003, 108(D13), doi: 10.1029/2002JD002928.
[8] Ding Yuguo. Research of universality for Γ distribution model of precipitation[J]. Scientia Atmospherica Scinca , 1994, 18(5): 552-560.
. 大气科学, 1994, 18(5): 552-560.]
[9] Tian Fuyou, Zheng Yongguang, Mao Dongyan, et al . Study on probability distribution of warm season hourly rainfall with Γ distribution[J]. Meteorological Monthly , 2014 (7): 787-795.
. 气象, 2014 (7): 787-795.]
[10] Wu Hongbao, Wang Panxing, Lin Kaiping. Probability distribution of the maximum amount of daily precipitation in certain days in June and July for Guangxi[J]. Journal of Tropical Meteorology , 2004, 20(5): 586-592.
. 热带气象学报, 2004, 20(5): 586-592.]
[11] Delbari M, Afrasiab P, Jahani S. Spatial interpolation of monthly and annual rainfall in northeast of Iran[J]. Meteorology and Atmospheric Physics , 2013, 122(1/2): 103-113.
[12] Wang Huijun. Preliminary results of the 973 project on the energy and water cycle and their role in extreme climate of China[J]. Advances in Earth Science , 2010, 25(6):563-570.
. 地球科学进展, 2010, 25(6): 563-570.]
[13] Wang Ninglian, He Jianqiao, Jiang Xi, et al . Study on the zone of maximum precipitation in the north slopes of the central Qilian Mountains[J]. Journal of Glaciology and Geocryology , 2009,31(3): 395-403.
. 冰川冻土, 2009,31(3):395-403.]
[14] Chen R S, Song Y X, Kang E S, et al . A cryosphere-hydrology observation system in a small alpine watershed in the Qilian Mountains of China and its meteorological gradient[J]. Arctic , Antarctic , and Alpine Research , 2014, 46(2): 505-523.
[15] Liu Z, Chen R, Song Y, et al . Distribution and estimation of aboveground biomass of alpine shrubs along an altitudinal gradient in a small watershed of the Qilian Mountains, China[J]. Journal of Mountain Science , 2015, 12(4): 961-971.
[16] Chen R, Liu J, Kang E, et al . Precipitation measurement intercomparison in the Qilian Mountains, north-eastern Tibetan Plateau[J]. The Cryosphere , 2015, 9(5): 1 995-2 008.
[17] Zhang Yaocun, Ding Yuguo. A general Gamma probability model for precipitation in various periods[J]. Acta Meteorologica Sinica , 1991, 49(1): 80-84.
. 气象学报, 1991, 49(1): 80-84.]
[18] Lin Zhiguang. Orographic Precipitation Climatology[M]. Beijing: Science Press, 1995:9-16.
. 北京:科学出版杜, 1995:9-16.]
[19] Ord K. Estimation methods for models of spatial interaction[J]. Journal of the American Statistical Association ,1975, 70(349): 120-126.
[20] Anselin L. Non nested tests on the weight structure in spatial autoregressive models: Some monte carlo results[J]. Journal of Regional Science ,1986, 26(2): 267-284.
[21] Anselin L. Lagrange multiplier test diagnostics for spatial dependence and spatial heterogeneity[J]. Geographical Analysis , 1988, 20(1): 1-17.
[22] Thom H C S. A note on the gamma distribution[J]. Monthly Weather Review ,1958, 86(4): 117-122.
[23] Wilks D S. Maximum likelihood estimation for the gamma distribution using data containing zeros[J]. Journal of Climate , 1990, 3(12): 1 495-1 501.
[24] Yao Zhensheng. Climate Statistics[M]. Beijing:Science Press, 1965.
. 北京:科学出版社, 1965.]
[25] Yao Zhensheng. Climatic Statistics: Statistical Climatology Based Theory.I[M]. Beijing:Science Press, 1984.
. 北京:科学出版社, 1984.]
[26] Liu Xuehua, Wu Hongbao. Probability distribution of summer daily precipitation in China[J]. Journal of Nanjing Institute of Meteorology , 2006, 29(2): 173-180.
. 南京气象学院学报, 2006, 29(2): 173-180.]
[27] Lin C Y, Chen C S. A study of orographic effects on mountain-generated precipitation systems under weak synoptic forcing[J]. Meteorology and Atmospheric Physics ,2002, 81(1/2): 1-25.
[28] Beniston M. Mountain weather and climate: A general overview and a focus on climatic change in the Alps[J]. Hydrobiologia ,2006, 562(1): 3-16.
[29] Tang Maocang. The distribution of precipitation in Mountain Qilian (Nanshan)[J]. Acta Geographica Sinica ,1985, 40(4): 323-332. [汤懋苍. 祁连山区降水的地理分布特征[J]. 地理学报, 1985, 40(4): 323-332.]
[30] Hong Guang, Hu Jifu. A study of the probability distribution models for monthly precipitation in Qingdao[J]. Journal of Ocean University of Qingdao ( Natural Science Edition ),1995, 25(2): 153-161.
. 青岛海洋大学学报: 自然科学版, 1995, 25(2): 153-161.]
[31] Garrett C, Müller P. Supplement to extreme events[J]. Bulletin of the American Meteorological Society , 2008, 89(11): ES45-ES56.
[32] Gemmer M, Fischer T, Jiang T, et al . Trends in precipitation extremes in the Zhujiang River Basin, South China[J]. Journal of Climate ,2011, 24(3): 750-761.
[1] 赵栋梁. 海洋飞沫及其对海—气相互作用影响的研究进展[J]. 地球科学进展, 2012, 27(6): 624-632.
[2] 李启权,王昌全,岳天祥,张文江,余勇. 基于神经网络模型的中国表层土壤有机质空间分布模拟方法[J]. 地球科学进展, 2012, 27(2): 175-184.
[3] 刘永和, 郭维栋, 冯锦明, 张可欣. 气象资料的统计降尺度方法综述[J]. 地球科学进展, 2011, 26(8): 837-847.
[4] 苏有亮,郭志,王卫民,高星. 用转换函数研究珠峰站地壳结构[J]. 地球科学进展, 2007, 22(8): 835-841.
[5] 宋淑丽;朱文耀;廖新浩. 地基GPS气象学研究的主要问题及最新进展[J]. 地球科学进展, 2004, 19(2): 250-259.
[6] 李雄. 实验均衡二十年[J]. 地球科学进展, 1992, 7(2): 12-.
[7] 熵课题组. 熵原理如何制约着大气[J]. 地球科学进展, 1992, 7(2): 45-.
[8] 潘汉军. 因子克立格分析的理论综述及应用展望[J]. 地球科学进展, 1992, 7(1): 50-.
阅读次数
全文


摘要