Please wait a minute...
img img
高级检索
地球科学进展  2017, Vol. 32 Issue (9): 983-995    DOI: 10.11867/j.issn.1001-8166.2017.09.0983
研究论文     
全球降水中氢氧稳定同位素GCM模拟空间分布的比较
王学界, 章新平, 张婉君, 张新主, 罗紫东
湖南师范大学资源与环境科学学院, 湖南师范大学地理空间大数据挖掘与应用湖南省重点实验室,湖南 长沙 410081
Comparison on Spatial Distribution of Hydrogen and Oxygen Stable Isotope GCM Simulation in Global Precipitation
Wang Xuejie, Zhang Xinping, Zhang Wanjun, Zhang Xinzhu, Luo Zidong
Key Laboratory of Geospatial Big Data Mining and Application, College of Resources and Environmental Science, Hu’nan Normal University, Changsha 410081, China
 全文: PDF(31009 KB)   HTML
摘要:

利用大气环流模式模拟降水中氢氧稳定同位素可以深入了解水循环过程中水稳定同位素的迁移变化规律并弥补实测数据在空间和时间方面的不连续性。利用10个引入水稳定同位素循环的GCM(General Circulation Models)模拟数据,分析了全球降水中稳定同位素效应的空间分布特征,对不同模式的模拟结果之间以及模拟结果与全球降水同位素监测网络(GNIP)的实际监测结果之间进行了比较,旨在对稳定同位素大气环流模式模拟结果的有效性进行评价,改善对水循环中水稳定同位素效应的理解和认识。结果显示,在δ18O的全球空间分布模拟方面,isoGSM,ECHAM4,LMDZ4和HadAM3模拟效果较佳;在δ18O的季节差的空间分布模拟方面各模式模拟效果总体较好,仅HadAM3模拟效果稍差;在δ18O与气温相关关系的空间分布模拟方面,isoGSM,GISS E-F,ECHAM4,GISS E-N和LMDZ4模拟结果与实测较匹配;在δ18O与降水量相关关系的空间分布模拟方面LMDZ4,isoGSM,GISS E-F,ECHAM4和MUGCM模拟能力较强;在全球大气降水线模拟方面GISS E-F,isoGSM和GISS E-N优势明显。

关键词: iGCMs全球大气降水线氢氧稳定同位素GNIP    
Abstract:

The general circulation models are used to simulate hydrogen and oxygen stable isotope in precipitation, which can enhance our understanding of the migratory processes of water stable isotope in water cycle and remedy disadvantages of measured data in spatial and temporal discontinuity. We used ten GCM (General Circulation Models) simulated data including stable isotope water cycle, and analyzed the spatial distribution characteristics of oxygen stable isotope effect in global precipitation. Meanwhile, we compared different simulated results as well as simulated results and the GNIP (Global Network of Isotopes in Precipitation) actual monitoring results. Our main purposes were to evaluate the simulative validity of stable isotope atmospheric circulation and improve our understanding and cognition for stable isotopic effect in water cycle. The results indicated that isoGSM, ECHAM4, LMDZ4 and HadAM3 showed good performances in simulating δ18O. Expect HadAM3, other simulated conclusion of models had good performances in the aspect of simulate seasonal difference of δ18O in spatial distribution. The simulated results of isoGSM, GISS E-F, ECHAM4, GISS E-N and LMDZ4 matched monitoring results more in the aspect of simulating relationship between δ18O and air temperature in spatial distribution. LMDZ4, isoGSM, GISS E-F, ECHAM4 and MUGCM had stronger capacity in the aspect of simulating relationship between δ18O and precipitation in spatial distribution. GISS E-F, isoGSM and GISS E-N had more advantage of simulate global meteoric water line.

Key words: iGCMs    GMWL.    Hydrogen and oxygen stable isotope    GNIP
收稿日期: 2017-04-11 出版日期: 2017-09-20
ZTFLH:  P426.6  
基金资助:

国家自然科学基金项目“湘江流域水稳定同位素的取样、模拟和比较”(编号:41571021); 湖南省重点学科建设项目“地理学”(编号:2016001)资助

通讯作者: 章新平(1956-),男,湖南长沙人,教授,主要从事气候变化的研究.E-mail:zxp@hunnu.edu.cn   
作者简介: 王学界(1992-),男,湖南新邵人,硕士研究生,主要从事同位素气象学与气候变化研究.E-mail:xuejiewang2015@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张新主
王学界
章新平
张婉君
罗紫东

引用本文:

王学界, 章新平, 张婉君, 张新主, 罗紫东. 全球降水中氢氧稳定同位素GCM模拟空间分布的比较[J]. 地球科学进展, 2017, 32(9): 983-995.

Wang Xuejie, Zhang Xinping, Zhang Wanjun, Zhang Xinzhu, Luo Zidong. Comparison on Spatial Distribution of Hydrogen and Oxygen Stable Isotope GCM Simulation in Global Precipitation. Advances in Earth Science, 2017, 32(9): 983-995.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2017.09.0983        http://www.adearth.ac.cn/CN/Y2017/V32/I9/983

[1] Dansgaard W. Stable isotopes in precipitation[J]. Tellus , 1964, 16(4): 436-468.
[2] Ding Xiaodong, Zheng Liwei, Gao Shuji. A review on the Younger Dryas event[J]. Advances in Earth Science , 2014, 29(10): 1 095-1 109.[丁晓东, 郑立伟, 高树基. 新仙女木事件研究进展[J]. 地球科学进展,2014, 29(10): 1 095-1 109.]
[3] Luan Yihua, Yu Yongqiang, Zheng Weipeng. Review of development and application of high resolution global climate system model[J]. Advances in Earth Science , 2016, 31(3): 258-268.[栾贻花, 俞永强, 郑伟鹏. 全球高分辨率气候系统模式研究进展[J]. 地球科学进展, 2016, 31(3): 258-268.]
[4] Li Yue, Wang Rujian, Li Wenbao. Review on research on paleo-sea level reconstruction based on foraminiferal oxygen isotope in deep sea sediments[J]. Advances in Earth Science , 2016, 31(3): 310-319.[李悦, 王汝建, 李文宝. 利用有孔虫氧同位素重建古海平面变化的研究进展[J]. 地球科学进展, 2016, 31(3): 310-319.]
[5] Liu Jingfeng, Ding Minghu, Xiao Cunde. Review on atmospheric water vapor isotopic observation and research: Theory, method and modeling[J]. Progress in Geography , 2015, 34(3): 340-353.[柳景峰, 丁明虎, 效存德. 大气水汽氢氧同位素观测研究进展——理论基础、观测方法和模拟[J]. 地理科学进展, 2015, 34(3): 340-353.]
[6] Zhang Xinping, Guan Huade, Zhang Xinzhu, et al . Comparisons and assessment on stable isotopic effects in precipitation by different models[J]. Quaternary Sciences , 2016, 36(6): 1 343-1 357.[章新平, 关华德, 张新主,等. 不同模式模拟的降水稳定同位素效应的比较和评估[J]. 第四纪研究, 2016, 36(6): 1 343-1 357.]
[7] Joussaume S, Sadourny R, Jouzel J. A general circulation model of water isotope cycles in the atmosphere[J]. Nature , 1984, 311: 24-29.
[8] Hoffmann G, Werner M, Heimann M. Water isotope module of the ECHAM atmospheric general circulation model: A study on timescales from days to several years[J]. Journal of Geophysical Research : Atmospheres , 1998, 103(D14): 16 871-16 896.
[9] Risi C, Noone D, Worden J, et al . Process-evaluation of tropospheric humidity simulated by general circulation models using water vapor isotopologues: 1. Comparison between models and observations[J]. Journal of Geophysical Research : Atmospheres , 2012, 117(D5): 1-26.
[10] Zhang Xinping, Sun Zhian, Zhang Xinzhu, et al . Intercomparison of δ 18 O in precipitation simulated by isotopic GCMs with GNIP observations over East Asia[J]. Quaternary Sciences , 2012, 32(1): 67-80.[章新平, 孙治安, 张新主,等. 东亚降水中δ 18 O的GCM模拟及其与GNIP实测值的比较[J]. 第四纪研究,2012, 32(1): 67-80.]
[11] Conroy J L, Cobb K M, Noone D. Comparison of precipitation isotope variability across the tropical Pacific in observations and SWING2 model simulations[J]. Journal of Geophysical Research : Atmospheres , 2013, 118(11): 5 867-5 892.
[12] Xi X. A review of water isotopes in atmospheric general circulation Models: Recent advances and future prospects[J]. International Journal of Atmospheric Sciences , 2014: 1-16,doi:10.1155/2014/250920.
[13] Bowen G J, Wilkinson B. Spatial distribution of δ 18 O in meteoric precipitation[J]. Geology , 2002, 30(4): 315-318.
[14] Meng Yuchuan, Liu Guodong. Effect of below-cloud secondary evaporation on stable isotopes in precipitation over the Yangtze River Basin[J]. Advances in Water Science , 2010, 21(3): 327-334.[孟玉川, 刘国东. 长江流域水稳定同位素的云下二次蒸发效应[J]. 水科学进展, 2010, 21(3): 327-334.]
[15] Taylor K E. Summarizing multiple aspects of model performance in a single diagram[J]. Journal of Geophysical Research : Atmospheres , 2001, 106(D7): 7 183-7 192.
[16] Craig H. Isotopic variations in meteoric waters[J]. Science , 1961, 133(3 465): 1 702-1 703.
[17] Zhang Xinping, Yao Tandong. Relations of oxygen isotopic composition in precipitation with temperature and precipitation amount in some regions of China[J]. Journal of Glaciology and Geocryology , 1994, 16(1): 31-40.[章新平, 姚檀栋. 我国部分地区降水中氧同位素成分与温度和降水量之间的关系[J]. 冰川冻土, 1994, 16(1): 31-40.]
[18] Che Y, Zhang M, Wang S, et al . Stable water isotopes of precipitation in China simulated by SWING2 models[J]. Arabian Journal of Geosciences , 2016, 9(19): 1-12.

[1] 陈亮, 段建平, 马柱国. 大气环流形势客观分型及其与中国降水的联系[J]. 地球科学进展, 2018, 33(4): 396-403.
[2] 王建, 车涛, 李震, 李弘毅, 郝晓华, 郑照军, 肖鹏峰, 李晓峰, 黄晓东, 钟歆玥, 戴礼云, 李红星, 柯长青, 李兰海. 中国积雪特性及分布调查[J]. 地球科学进展, 2018, 33(1): 12-15.
[3] 郭淑海, 陈仁升, 韩春坛, 刘国华, 宋耀选, 阳勇, 刘章文, 刘俊峰. 冰雪升华测算结果及影响因素研究进展[J]. 地球科学进展, 2017, 32(11): 1204-1217.
[4] 贺娟. 氢氧同位素记录揭示的巽他陆架末次冰期以来古降水量变化[J]. 地球科学进展, 2017, 32(11): 1137-1146.
[5] 张丽霞, 张文霞, 周天军, 吴波. ENSEMBLES耦合模式对全球陆地季风区夏季降水的年代际预测能力评估[J]. 地球科学进展, 2017, 32(4): 409-419.
[6] 刘波, 王晓蕾, 康钊菁, 苏腾, 翟东力, 袁靖. 降雨发生装置空间均匀性的研究[J]. 地球科学进展, 2016, 31(8): 820-828.
[7] 王磊, 陈仁升, 宋耀选. 基于Γ函数的祁连山葫芦沟流域湿季小时降水统计特征[J]. 地球科学进展, 2016, 31(8): 840-848.
[8] 姚遥, 罗德海. 北大西洋涛动—欧洲阻塞及其对极端暴雪影响的研究进展[J]. 地球科学进展, 2016, 31(6): 581-594.
[9] 孙炜毅, 刘健, 王志远. 过去2000年东亚夏季风降水百年际变化特征及成因的模拟研究[J]. 地球科学进展, 2015, 30(7): 780-790.
[10] 张强, 马芳, 王莺, 宋连春, 马鹏里. 浅论气候容量及其对气候安全风险管理的作用[J]. 地球科学进展, 2015, 30(6): 709-714.
[11] 方建, 杜鹃, 徐伟, 史培军, 孔锋. 气候变化对洪水灾害影响研究进展[J]. 地球科学进展, 2014, 29(9): 1085-1093.
[12] 张强, 韩兰英, 张立阳, 王劲松. 论气候变暖背景下干旱和干旱灾害风险特征与管理策略[J]. 地球科学进展, 2014, 29(1): 80-91.
[13] 郑晓东,鲁帆,马静. 汉江流域降水多时间尺度特性及其与环流因子的相关性分析[J]. 地球科学进展, 2013, 28(5): 618-626.
[14] 王文,徐红. Palmer干旱指数在淮河流域的修正及应用[J]. 地球科学进展, 2012, 27(1): 60-67.
[15] 葛全胜, 丁玲玲, 郑景云, 郝志新. 利用雨雪分寸重建福州前汛期雨季起始日期的方法研究[J]. 地球科学进展, 2011, 26(11): 1200-1207.