地球科学进展 ›› 2007, Vol. 22 ›› Issue (12): 1240 -1250. doi: 10.11867/j.issn.1001-8166.2007.12.1240

综述与评述 上一篇    下一篇

古海水pH值代用指标——海洋碳酸盐硼同位素研究进展
刘羿 1,彭子成 1,刘卫国 2,肖应凯 3,孙若愚 1,贺剑峰 1,刘桂建 1   
  1. 1.中国科学技术大学地球和空间科学学院,安徽 合肥 30026;2.中国科学院地球环境研究所黄土与第四纪地质国家重点实验室,陕西 西安 710054;3.中国科学院青海盐湖研究所,青海 西宁 810008
  • 收稿日期:2007-08-22 修回日期:2007-11-05 出版日期:2007-12-10
  • 通讯作者: 刘羿(1981-),男,重庆人,博士研究生,主要从事海洋环境与全球变化研究.E-mail:gee@mail.ustc.edu.cn E-mail:gee@mail.ustc.edu.cn
  • 基金资助:

    中国科学院知识创新工程重要方向项目“南海珊瑚礁纪录之4000年来年际—年代际温度过程、驱动机制与生态响应”(编号:KZCX2-YW-318);国家自然科学基金重大项目“南海北部滨珊瑚硼同位素示踪研究近200年来海平面的变化”(编号:40676069)和“晚新生代青海高分辨的古环境记录及其对全球变化的意义”(编号:40599424)资助.

Advances in Paleo seawater pH Proxy: Boron Isotope in Marine Carbonates

LIU Yi 1, PENG Zi-cheng 1, LIU Wei-guo 2, XIAO Ying-kai 3,SUN Ruo-yu 1, HE Jian-feng 1, LIU Gui-jian 1   

  1. 1.School of Earth and Space Science, University of Science and Technology of China,Hefei 230026,China;2.Key Laboratory of Loess and Quaternary Geology, Chinese Academy of Sciences, Xi'an 710054,China;3.Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008,China
  • Received:2007-08-22 Revised:2007-11-05 Online:2007-12-10 Published:2007-12-10

仪器测量的海水pH记录太短,无法评估海水pH自然变化的频率和幅度,并预测未来大气CO2急剧增加后海水酸度的响应。海相碳酸盐的硼同位素是目前恢复古海洋pH的有效途径,倍受古气候—环境学家的重视。评述了近年来海洋碳酸盐的硼同位素的最新研究成果和研究现状,重点探讨了海相碳酸盐的硼同位素的测定方法、硼同位素—pH模型和古海水pH恢复等前沿内容,旨在提供一个系统的海洋碳酸盐硼同位素—pH系统的基本概念及研究思路,以利于气候学、地质学界了解这一交叉领域的发展动态。

Due to the tight coupling between ocean acidity and atmospheric concentrations of the greenhouse gas CO2, reconstruction of the former is one of the major goals in paleoclimatology. Given that instrumental records of seawater pH exceeding a single decade are not yet available, the boron isotopic composition of marine carbonates currently offers the only practical means to determine paleo-seawater through time. The boron isotope ratios are best measured by thermal ionization mass spectrometry (TIMS).The boron isotope-pH proxy is founded on a theoretical model of carbonate δ11B variation with pH that assumes that the boron isotopic composition of marine carbonates mirrors the boron isotopic composition of borate in seawater. Quantified, reconstruction of ancient ocean pH requires a precise definition of α (the Equilibrium isotope fractionation factor between borate and boric acid) and pKB (the apparent dissociation constant of boric acid) and further knowledge of δ11B of ancient seawater, which is impacted by the rate of continental erosion. Complications aside, boron isotopes remain a powerful tool in the reconstruction of past seawater pH, however, various aspects of these parameters require rigorous evaluation. Therefore, given our current understanding, great care should be taken when interpreting long-term trends in δ11B of marine carbonate when the ultimate goal is to reconstruct ocean pH and ancient atmospheric carbon dioxide levels. The paleo-pH reconstructions by δ11B of marine carbonate show a higher pH in glacial ocean which is consistent with lower atmospheric carbon dioxide concentrations recorded ice cores and demonstrate the coupling between surface ocean chemistry and the atmosphere, allowing for quantitative estimation of atmospheric p(CO2) beyond the reach of ice cores. However, high resolution δ11B ratios of corals show rapid change of paleo-pH at decadal-millennial timescale indicating p(CO2) between ocean and atmosphere may not be always in equilibrium and there are other forcing accounting for variability of ocean pH. Improvement the model of the boron isotope-pH proxy, high resolution paleo-pH reconstruction and relationships between ocean pH globe carbon cycling need to be pay more attention in future works of this field. 

中图分类号: 

[1]Vengosh A, Kolodny Y, Starinsky A, et al. Coprecipitation and isotopic fractionation of boron in modern biogenic carbonates[J].Geochimica et Cosmochimica  Acta, 1991, 55(10): 2 901-2 910.
[2]Hemming N G, Hanson G N. Boron isotopic composition and concentration in modern marine carbonates[J]. Geochimica et Cosmochimica Acta,1992, 56(1): 537-543.
[3]Jiang Shaoyong. Boron isotope and its geological applications [J]. Earth Science Frontiers,2000, 6(1):1-16. [蒋少涌.硼同位素及其地质应用研究[J].地学前缘,2000,6(1): 1-16.]
[4]Liu Weiguo, Peng Zicheng, Xiao Yingkai. Boron and chlorine isotopic determinations and applications for earth sciences [J]. Advances in Earth Science, 2000, 13(6): 547-554.[刘卫国,彭子成,肖应凯.硼、氯同位素测定方法及地球化学研究进展[J].地球科学进展,2000, 13(6): 547-554.]
[5]Xiao Y K, Beary E S, Fassett J D. An improved method for the high-precision isotopic measyrement of boron by thermal ionization mass spectrometry [J]. International Journal of Mass Spectrometry and Ion Processes,1988, 85:203-313. 
[6]Spivack A J, You C F, Smith J. Foraminiferal boron isotopic ratios as a proxy for surface ocean pH over the past 21 Ma[J]. Nature,1993, 363: 149-151.
[7]Hemming N G, Hanson G N. A procedure for the isotopic analysis of boron by negative thermal ionization mass spectrometry [J].Chemica Geology,1994, 114(1/2): 147-156.
[8]Sanyal A, Hemming N G, Hanson G N, et al. Evidence for a high pH in the glacial ocean from boron isotopes in foraminifera[J]. Nature,1995, 373: 234-236.
[9]Gaillardet J, Allègre C J. Boron isotopic compositions of coral: Seawater or diagenesis record?[J]. Earth and Planatery Science Letters,1995, 136(3/4): 665-676.
[10]Hönisch B,Hemming N G, Grottoli A G, et al. Assessing scleratinian corals as recorders for paleo-pH: Empirical calibration and vital effects [J]. Geochimical et Cosmochimica Acta,2004, 68(18):3 675-3 685.
[11]Wei H, Xiao Y K, Sun, A, et al. Effective elimination of isobaric ions interference and precise thermal ionization mass spectrometer analysis for boron isotope[J].International Journal of Mass Spectrometry,2004, 235(2):187-195.
[12]Pelejero C, Calvo E, McCulloch M T, et al. Preindustrial to modern interdecadal variability in coral reef pH[J]. Science,2005, 309:2 204-2 207.
[13]Al-AmmarU A, Reitznerova E, Barnes R M. Improving boron isotope ratio measurement precision with quadrupole inductively coupled plasma-mass spectrometry [J].Spectrochimica Acta Part B,2000, 55(12):1 861-1 867.
[14]Lécuyer C, Grandjean P, Reynard B, et al.11B/10B analysis of geological materials by ICP-MS Plasma 54:Application to the boron fractionation between brachiopod calcite and seawater[J].Chemica Geology,2002, 186(1/2):45-55.
[15]Roux P J, Shirey S B, Benton L, et al. In situ, multiple-multiplier, laser ablation ICP-MS measurement of boron isotopic composition (δ11B) at the nanogram level[J]. Chemical Geology,2004, 203 (1/2): 123-138.
[16]Tiepolo M , Bouman C, Vannucci R, et al. Laser ablation multicollector ICPMS determination of δ11B in geological samples[J]. Applied Geochemistry, 2006, 21(5):788-801.
[17]Vering G, Crone C, Bijma J, et al. TOF-SIMS Characterization of Planktonic Foraminifera[J]. Applied Surface Science, 2003, 203-204:785-788.  
[18]Vering G, Crone C, Kathers P, et al. Resonant laser-SNMS of boron for analysis of paleoceanographic samples[J].Applied Surface Science, 2006, 252(19): 7 163-7 166.
[19]Hemming N G, Reeder R J, Hanson G N. Mineral-fluid partitioning and isotopic fractionation of boron in synthetic calcium carbonate [J]. Geochimica Cosmochimica Acta,1995, 59(2):371-379.
[20]Sanyal A, Hemming N G, Broecker W S. Oceanic pH control on the boron isotopic composition of foraminifera: Evidence from culture experiments[J]. Paleoceanography, 1996, 11(5):513-517.
[21]Sanyal A, Nugent M, Reeder R J, et al. Seawater pH control on the boron isotopic composition of calcite: Evidence from inorganic calcite precipitation experiments [J]. Geochimica et Cosmochimica Acta,2000, 64(9):1 551-1 555.
[22]Sanyal A, Bijma J, Spero H, et al. Empirical relationship between pH and the boron isotopic composition of Globigerinoides sacculifer: Implications for the boron isotope paleo-pH proxy[J]. Paleoceanography,2001, 16(5):515-519.
[23]Reynaud S, Hemming N G, Juillet-Leclerc A, et al. Effect of pCO2 and temperature on the boron isotopic composition of the zooxanthellate coral Acropora sp[J]. Coral Reefs,2004, 23(4): 539-546.
[24]Kakihana H, Kotaka M, Satoh S, et al. Fundamental Studies on the ion-exchange separation of boron isotopes[J].Bulletin of the Chemical Society of Japan, 1977,50(1):158-163.
[25]Zeebe R E. Stable boron isotope fractionation between dissolved B(OH)3 and B(OH)-4[J]. Geochimical et Cosmochimica Acta, 2005, 69(11): 2 753-2 766.
[26]Oi T. Ab initio orbital calculations of reduced partition function ratios of polyboric acids and borate anions [J]. Zeitschrift Naturforschung,2000, 55:623-628.
[27]Liu Y, Tossell J A. Ab initio molecular orbital calculations for boron isotope fractionations on boric acids and borates [J]. Geochimica Cosmochimica Acta, 2005, 69(16): 3 995-4 006.
[28]Byrne R H, Yao W, Klochko K, et al. Experimental evaluation of the isotopic exchange equilibrium 10B(OH)3+ 11B(OH)-4= 11B(OH)3+ 10B(OH)-4 in aqueous solution[J]. Deep-Sea Research 1, 2006, 53(4):684-688.
[29]Klochko K, Kaufman A J, Yao W, et al. Experimental measurement of boron isotope fractionation in seawater[J]. Earth and Planatery Science Letters,2006, 248(1/2):276-285.
[30]Pearson P N, Palmer M R. Atmospheric carbon dioxide concentra-tions over the past 60 million years [J]. Nature,2000, 406: 695-699.
[31]Lemarchand D, Gaillardet J, Lewiné, et al. The influence of rivers on marine boron isotopes and implications for reconstructing past ocean pH[J]. Nature,2000, 408:951-954.
[32]Lemarchand D, Gaillardet J, Lewin é, et al. Boron isotope systematics in large rivers: Implications for the marine boron budget and palaeo-pH reconstruction over the Cenozoic[J].Chemica Geology, 2002 190(1/4): 123-140.
[33]Rose E , Chaussidon M, France-Lanord C. Fractionation of boron isotopes during erosion processes; the example of Himalayan rivers[J]. Geochimica et Cosmochimica Acta,2000, 64(3):397-408.
[34]Spivack A J, Palmer M R, Edmond J M. The sedimentary cycle of the boron isotopes[J]. Geochimica et Cosmochimica Acta, 1987, 51(7):1 939-1 949.
[35]Kopf A, Deyhle A. Back to the roots: Boron geochemistry of mud volcanoes and its implications for mobilization depth and global B cycling [J]. Chemical Geology, 2002, 192(3/4):195-210.
[36]Palmer M R, Spivack A, Edmond J M. Temperature and pH controls over isotopic fractionation during absorption of boron on marine clay[J]. Geochimica et Cosmochimica Acta, 1987, 51(9):2 319-2 323.
[37]Simon L, L cuyer C, Mar chal C,et al. Modelling the geochemical cycle of boron: Implications for the long-term δ11Bevolution of seawater and oceanic crust[J]. Chemical Geology, 2006, 225(1/2): 61-76.
[38]Joachimski M, Simon L, Geldern R. Boron isotope geochemistry of Paleozoic brachiopod calcite: Implications for a secular change in the boron isotope geochemistry of seawater over the Phanerozoic[J].Geochimica et Cosmochimica Acta, 2005, 69(16): 4 035-4 044.
[39]Hansson I. A new set of acidity constants for carbonic acid and boric acid in sea water [J]. Deep-Sea Research,1973, 20:461-478.
[40]Dickson A G. Thermodynamics of the dissociation of boric acid in synthetic seawater from 273.15 to 318.15 K [J]. Deep-Sea Research,1990, 37(5): 755-766.
[41]Roy R N, Roy L N, Vogel K M, et al. Thermodynamics of the dissociation of boric acid in seawater at S = 35 from 0 to 55℃[J]. Marine Chemistry,1993, 44(2/4): 243-248.
[42]Schrag D P, Linsley B. Corals, Chemistry, and Climate [J].Science,2002, 296:277-278.
[43]Pagani M, Lamarchand D, Spivack A, et al. A critical evaluation of the boron isotope-pH proxy: The accuracy of ancient ocean pH estimates [J]. Geochimica et Cosmochimica Acta,2005, 69(4): 953-961.
[44]Pagani M, Spivack A. Response to the Comment on A critical evaluation of the boron isotope-pH proxy: The accuracy of ancient ocean pH estimates[J].Geochimica et Cosmochimica Acta,2007, 71(6):1 642.
[45]Hönisch B, Hemming N G, Loose B. Comment on A critical evaluation of the boron isotope-pH proxy: The accuracy of ancient ocean pH estimates'' by M. Pagani, D. Lemarchand, A. Spivack and J. Gaillardet [J]. Geochimica et Cosmochimica Acta,2007, 71(6): 1 636-1 641.
[46]Hönisch B, Hemming N G. Ground-truthing the boron isotope paleo-pH proxy in planktonic foraminifera shells: Partial dissolution and shell size effects [J].Paleoceanography,2004, 19 (4): PA4010, doi: 10.1029/2004PA001026.
[47]Peng Zicheng, Chen Tegu, Nie Baofu,et al. Coral δ18O records as an indictor of winter monsoon intensity in the South China Sea[J].Quaternary Research,2003,59(3): 285-292.
[48]Wei Gangjian, Sun Min, Li Xianhua,et al. Mg/Ca, Sr/Ca and U/Ca ratios of a porites coral from Sanya Bay, Hainan Island, South China Sea and their relationships to sea surface temperature[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2000,162(1/2):59-74.
[49]Cobb K M, Charles C D, Cheng H. et al. El Niño/Southern Oscillation and tropical Pacific climate during the last millennium [J]. Nature,2003, 424: 271-276.
[50]Guo Jintang. Ocean Chemistry [M]. Xiamen: Xiamen University Press, 1997: 305-350.[郭锦堂. 化学海洋学[M]. 厦门:厦门大学出版社,1997:305-350.]
[51]Petit J R, Jouzel J, Raynaud D, et al. Climate and atmospheric history of the past 420 000 years from the Vostok ice core, Antarctica[J].Nature,1999, 399:429-436.
[52]Pearson P N, Palmer M R. Middle Eocene seawater pH and at-mospheric carbon dioxide concentration [J].Science,1999, 284: 1 824-1 826.
[53]Henderson G M. New oceanic proxies for paleoclimate [J].Earth and Planetary Science Letters,2002, 203(1):1-13.
[54]Hönisch B, Hemmin N G. Surface ocean pH response to variations in pCO2 through two full glacial cycles[J].Earth and Planetary Science Letters,2005, 236(1/2): 305-314.
[55]Palmer M R, Pearson P N. A 23 000-year record of surface water pH and pCO2 in the Western Equatorial Pacific Ocean [J].Science,2003, 480:480-482.
[56]Matear R J, McNeil B I. Comment on “Preindustrial to modern interdecadal variability in coral reef pH”[J].Science, 2006, 314:595b.
[57]Pelejero C, Calvo E, McCulloch M T, et al. Response to comment on “Preindustrial to modern interdecadal variability in coral reef pH”[J]. Science, 2006, 314:595c.
[58]Yates K K, Halley R B. CO2-3  concentration and p(CO)2 thresholds for calcification and dissolution on the Molokai reef flat, Hawaii[J].Biogeosciences Discussions, 2006,3(1):123-154.
[59]Ohde S, Woesik R V. Carbon dioxide flux and metabolic processes of a coral reef, Okinawa[J].Bulletin of Marine Science,1999, 65(2):559-576.
[60]Suzuki A, Nakamori T, Kayanne H. The mechanism of production enhancement in coral reef carbonate system: Model and empirical results[J].Sedimentary Geology,1995, 99:259-280.
[61]Liu Weiguo, Peng Zicheng, Xiao Yingkai, et al. Boron isotopic composition of corals from South China sea and their environmental significance[J].Geochimica,1999,28(6):534-541.[刘卫国,彭子成,肖应凯,等.南海珊瑚礁硼同位素组成及其环境意义[J].地球化学,1999,28(6):534-541.]
[62]Monnin E, Steig E J, Siegenthaler U, et al. Evidence for substantial accumulation rate variability in Antarctica during the Holocene, through synchronization of CO2 in the Taylor Dome, Dome C and DML ice cores[J].Earth and Planetatery Science Letters, 2004, 224(1/2): 45-54.
[63]Wang Y, Cheng H, Edwards R. L, et al. The Holocene Asian Monsoon: Links to solar changes and North Atlantic climate [J]. Science, 2005, 308:854-857.
[64]Yancheva G, Nowaczyk N R, Mingram J,et al. Influence of the intertropical convergence zone on the East Asian monsoon[J].Nature,2007, 445:74-77.
[65]Bond G, Kromer B, Beer J, et al. Persistent solar influence on North Atlantic climate during the Holocene [J]. Science,2001, 294:2 130-2 136.
[66]Nie Baofu, Chen Tegu, Liang Meitao, et al. Coral reef at Leizhou Peninsula and sea level highstand in the Holocene [J]. Chinese Science Bulletin, 1997, 42(5): 511-513.[聂宝符, 陈特固,梁美桃,等. 雷州半岛珊瑚礁与全新世高海面[J]. 科学通报,1997, 42(5): 511-513.]
[67]Yu Kefu, Zhong Jinliang, Zhan Jianxin, et al. Biological-geomorphological zones in a coral reef area at southwest Leizhou Peninsula unveil multiple sea level high-stands in the Holocene[J].Marine Geology & Quaternary Geology, 2002, 22(2):27-33. [余克服,钟晋梁,赵建新,等. 雷州半岛珊瑚礁生物地貌带与 全新世多期相对高海平面[J].海洋地质与第四纪地质,2002,22(2):27-33.]
[68]Wu Risheng, Li Li. Summarization of study on upwelling system in the South China sea[J]. Journal of Oceanography in Taiwan Strait,2003, 22(2): 269-277.[吴日升,李立.南海上升流研究概述[J]. 台湾海峡,2003, 22(2): 269-277.]
[69]Caldeira K , Wickett M E. Anthropogenic carbon and ocean pH[J]. Nature,2003, 425:365.
[70]Wang Pinxian, Jian Zhimin, Liu Zhifei. Interactions between the earth spheres: Deep-sea processes and records (I): Research progress and achievement [J]. Advances in Earth Science,2006, 21(4):331-337.[汪品先, 翦知湣, 刘志飞. 地球圈层相互作用中的深海过程和深海记录(I):研究进展与成果[J]. 地球科学进展, 2006, 21(4):331-337.] 
[71]Wang Pinxian, Jian Zhimin, Liu Zhifei. Interactions between the earth spheres: Deep-sea processes and records (II): Tropical forcing of climate changes and carbon cycling [J].Advances in Earth Science,2006,21(4): 338-345. [汪品先, 翦知湣, 刘志飞. 地球圈层相互作用中的深海过程和深海记录(II): 气候变化的热带驱动与碳循环[J]. 地球科学进展, 2006, 21(4):338-345.]
[72]Huang Changchun. Environmental Variation[M]. Beijing: Science Press,1998:209. [黄长春. 环境变迁[M].北京:科学出版社,1998:209. ]
[73]Wang Shaowu, Ye Jinlin , Gong Daoyi . Climate of the Little Ice Age in China [J].Quarternary Science,1998,(1): 54-64. [王绍武,叶瑾琳,龚道溢. 中国小冰期的气候[J].第四纪研究,1998,(1):54-64.]
[74]Zhu Kezhen. Preliminary study to the climatic variation during the recent 5 000 years in China[J]. Acta Archaeology Sinica, 1972,2(1):15-38. [竺可桢.中国近五千年来气候变迁的初步研究[J].考古学报, 1972,2(1):15-38.]
[75]Hameed S, Gong Gaofa. Temperature changes in historical period of China[C]//Zhang Yi et al. eds. Climatic Variation and Its Impact. Beijing: China Meteorological Press,1993:57-69.[Hameed S ,龚高法.中国历史时期温度的变化[C]//张翼等.气候变化及其影响. 北京:气象出版社, 1993:57-69.]
[76]Shi Yafeng , Kong Zhaochen , Wang Sumin , et al . The basic climatic and environmental characteristics of the megathermo in Holocene of China[C]//Shi Yafeng eds. The Climate and Environmental of the Megathermo in Holocene of China. Beijing :China Ocean Press ,1992:1-18.[施雅风,孔昭辰,王苏民, 等. 中国全新世大暖期气候与环境的基本特征[C]//施雅风.中国全新世大暖期气候与环境.北京:海洋出版社,1992:1-18.]
[77]An Zhisheng , Wu Xihao , Lu Yanchou , et al . The preliminary study to the environmental change of china in the recent 20 000 years[C]//Liu Dongsheng eds. Loess Geology in Quarternary Global Change. Beijing: Science Press,1990: 1-26.[安芷生,吴锡浩,卢演畴,等. 二万年来中国环境变化的初步研究[C]//刘东生. 黄土第四纪地质全球变化.北京:科学出版社,1990: 1-26.]
[78]Wang Sumin.The environmental change and paleoclimate in Daihai since the last ice age[J].Quarternary Sience,1990, (3):223-232.[王苏民. 末次冰期以来岱海环境变化与古气候[J].第四纪研究,1990,(3):223-232.]
[79]Yao Tandong , Shi Yafeng. Climatic change of the Holocene in the ice core records of Dunde in the Qilianshan Mountain[C]//Shi Yafeng eds. The Climate and Environmental of the Megathermo in the Holocene of China. Beijing: China Ocean Press,1992: 206-211[姚檀栋,施雅风. 祁连山敦德冰芯记录的全新世气候变化[C]//施雅风.中国全新世大暖期气候与环境.北京:海洋出版社, 1992: 206-211.]
[80]Chen Jiyang. The preliminary studies to the several questions about lichen of glacier change in the Holocene in Wulumuqi River of Tianshan Mountain[J].Science in China(Series B),1988,(1):95-104.[陈吉阳. 天山乌鲁木齐河源全新世冰川变化的地衣学若干问题初步研究[J]. 中国科学:B辑,1988,(1):95-104.]
[81]Li Jijun. Basic characteristics of the Tibetan glacier[C]//Li Jijun eds. Tibetan Glacier. Beijing: Science Press ,1986:37-66.[李吉均. 西藏冰川的基本特征[C]//李吉均.西藏冰川.北京:科学出版社,1986:37-66.]
[82]Xu Guochang. Climate Change in Arid and Self-Arid Zone[M]. Beijing : China Meteorological Press,1997:1-101.[徐国昌. 中国干旱半干旱区气候变化[M] . 北京:气象出版社,1997:1-101.]
[83]Wang Shaowu, Xie Zhihui. Climate variability at millennial time scales[J].Earth Science Frontiers,2002, 9(1):143-153.[王绍武,谢志辉.千年尺度气候变率的研究[J].地学前缘,2002, 9(1):143-153.]

[1] 田静. 大气 CO2浓度增加对中国区域植被蒸腾的影响[J]. 地球科学进展, 2021, 36(8): 826-835.
[2] 高俊峰,苏强. 群落物种多度的分形模型和一般性分布规律的验证与探讨[J]. 地球科学进展, 2021, 36(6): 625-631.
[3] 周卫健,吴书刚,熊晓虎,程鹏,王鹏,侯瑶瑶,牛振川,杜花,陈宁,卢雪峰,付云翀,刘林. 我国城市大气化石源 CO214C示踪研究进展[J]. 地球科学进展, 2020, 35(9): 881-889.
[4] 张晓辉,彭亚兰,黄根华. 南海碳源汇的区域与季节变化特征及控制因素研究进展[J]. 地球科学进展, 2020, 35(6): 581-593.
[5] 汪品先. 深水珊瑚林[J]. 地球科学进展, 2019, 34(12): 1222-1233.
[6] 罗中原,李江涛,贾国东. 深水珊瑚的食物及其地球化学意义[J]. 地球科学进展, 2019, 34(12): 1234-1242.
[7] 黄恩清,孔乐,田军. 冷水珊瑚测年与大洋中—深层水碳储库[J]. 地球科学进展, 2019, 34(12): 1243-1251.
[8] 孔乐,黄恩清,田军. 冷水珊瑚氧、碳同位素—古水温重建与钙化机制[J]. 地球科学进展, 2019, 34(12): 1252-1261.
[9] 党皓文,马小林,杨策,金海燕,翦知湣. 重建高分辨率深海环境变化:冷水竹节珊瑚无机地球化学方法[J]. 地球科学进展, 2019, 34(12): 1262-1272.
[10] 徐昭萌, 刘素美. 底栖有孔虫体内储存硝酸盐和反硝化研究进展[J]. 地球科学进展, 2017, 32(9): 949-958.
[11] 王瑞, 余克服, 王英辉, 边立曾. 珊瑚礁的成岩作用[J]. 地球科学进展, 2017, 32(3): 221-233.
[12] 李悦, 王汝建, 李文宝. 利用有孔虫氧同位素重建古海平面变化的研究进展[J]. 地球科学进展, 2016, 31(3): 310-319.
[13] 余克服, 张光学, 汪稔. 南海珊瑚礁: 从全球变化到油气勘探—第三届地球系统科学大会专题评述[J]. 地球科学进展, 2014, 29(11): 1287-1293.
[14] 唐文魁,高全洲. 河口二氧化碳水—气交换研究进展[J]. 地球科学进展, 2013, 28(9): 1007-1014.
[15] 薛亮,于卫东,宁春林,王辉武. 海表层二氧化碳分压之时间序列研究进展[J]. 地球科学进展, 2013, 28(8): 859-865.
阅读次数
全文


摘要