[1]IPCC (Intergovernmental Panel on Climate Change). Climate Change 2007: The Physical Science Basis—Summary for Policymakers, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change[R]. Switzerland: IPCC Secretariat, 2007:1-18. [2]Post W M, Peng T H, Emanuel W R, et al. The global carbon cycle[J]. American Scientist, 1990, 78(4):310-326. [3]Kleypas J A, Feely R A, Fabry V J, et al. Impacts of Ocean Acidification on Coral Reefs and Other Marine Calcifiers: A Guide for Future Research[R]. Report of a Workshop Held 18-20 April 2005, St. Petersburg, FL, Sponsored by NSF, NOAA and the US Geological Survey,2006:1-88. [4]Martin J, Fitzwater S, Gordon R. Iron deficiency limits phytoplankton growth in Antarctic waters[J]. Global Biogeochemical Cycles, 1990,4(1):5-12. [5]Adhiya J, Chisholm S W. Is Ocean Fertilization Worth Pursuing as a Carbon Sequestration Option?[R]. A White Paper Prepared for the Center for Environmental Initiatives at MIT,2001:1-58. [6]Zeng Chengkui, Bi Liejue, eds. A Glossary of Terms and Names of algae[M]. Beijing: Science Press,2005: 1-436. [曾呈奎, 毕列爵,主编.藻类学名词及名称[M]. 北京: 科学出版社,2005:1-436.] [7]Jordan R W, Kleijne A. A classification system for living coccolithophores[C]//Winter A, Siesser W G, eds. Coccolithophores. Cambridge: Cambridge University Press, 1994:83-106. [8]Sorby H C. On the organic origin of the so-called. crystalloids’ of the chalk[J]. Annals and Magazine of Natural History,1861,3(8):193-200. [9]Siesser W G. Historical background of coccolithophore studies[C]//Winter A, Siesser W G, eds. Coccolithophores. Cambridge: Cambridge University Press,1994:1-11. [10]Murray J, Renard A F. Deep-Sea Deposits[C]//Scientific Reports of the Voyage H M S Challenger.1891:1-525. [11]Lohmann H. Die Coccolithophoridae[J]. Arch Protistenk, 1902, 1:89-165. [12]Marshall S M. The production of microplankton in the Great Barrier Reef region in British museum grent barrier reef expedition 1928-1929[J].Science Report,1933, 2(3):111-157. [13]Silva E S. O microplâncton de superfície nos meses de Setembro e Outubro na estacáo de Inhaca (Moác,cmbique)[J]. Memory Junta Invest Ultram,1960, 18(2):75-96. [14]Paasche E. A review of the coccolithophorid Emiliania huxleyi (Prymnesiophyceae), with particular reference to growth, coccolith formation, and calcification-photosynthesis interactions[J]. Phycologia, 2002,40(6):503-529. [15]Brown C W, Yoder J A. Coccolithophorid blooms in the global ocean[J]. Journal of Geophysical Research, 1994,99(C): 7 467-7 482. [16]Balch W M, Kipatrick K A. Calcification rates in the Equatorial Pacific along 140°W[J]. Deep-Sea Research II, 1996, 43:971-993. [17]Tyrrell T, Holligan P M, Mobley C D. Optical impacts of oceanic coccolithophore blooms[J]. Journal of Geophysical Research,1999,104:3 223-3 241. [18]Keller M D, Bellows W K, Guillard R R L. Dimethyl sulfide production in marine phytoplankton: Review[C].ACS Symposium Series, 1989, 393:167-182. [19]Bown P R, Lees J A, Young J R. Calcareous nannoplankton evolution and diversity through time[C]//Thierstein H R, Young J R, eds. Coccolithophores: From Molecular Processes to Global impact. Berlin: Springer, 2004:481-508. [20]Morse J W, Mackenzie F T. Geochemistry of Sedimentary Carbonates[M]. Amsterdam: Elsevier, 1990:1-707. [21]Rost B, Riebesell U. Coccolithophores and the biological pump: responses to environmental changes[C]//Thierstein H R, Young J R,eds. Coccolithophores: From Molecular Processes to Global impact. Berlin: Springer,2004:99-127. [22]Zondervan I, Zeebe R E, Rost B, et al. Decreasing marine biogenic calcification: A negative feedback on rising atmospheric p(CO2)[J]. Global Biogeochemical Cycles, 2001, 15(2):507-516. [23]Purdie D A, Finch M S. Impact of a coccolithophorid on dissolved carbon dioxide in sea: Water enclosures in a Norwegian fjord[J]. Sarsia, 1994, 79(4):379-487. [24]Robertson J E, Robinson C, Turner D R, et al. The impact of a coccolithophore bloom on oceanic carbon uptake in the northeast Atlantic during summer 1991[J]. Deep-Sea Research I,1994,41(2):297-314. [25]Buitenhuis E, van Bleijswijk J, Bakker D C E, et al. Trends in inorganic and organic carbon in a bloom of Emiliania huxleyi in the North Sea[J]. Marine Ecology Progress Series, 1996, 143:271-282. [26]Head R N, Crawford D W, Egge J K, et al. The hydrography and biology of a bloom of the coccolithophorid Emiliania huxleyi in the northern North Sea[J]. Journal of Sea Research,1998, 39(3/4): 255-266. [27]Armstrong R A, Lee C, Hedges J I, et al. A new, mechanistic model for organic carbon fluxes in the ocean based on the quantitative association of POC with ballast minerals[J]. Deep Sea Research II: Topical Studies in Oceanography,2001, 49(1/3): 219-236. [28]Klaas C, Archer D E. Association of sinking organic matter with various types of mineral ballast in the deep sea: Implications for the rain ratio[J]. Global Biogeochemical Cycles,2002,16(4):1 116-1 130. [29]Delille B, Harlay J, Zondervan I, et al. Response of primary production and calcification to changes of p(CO2) during experimental blooms of the coccolithophorid Emiliania huxleyi[J]. Global Biogeochemical Cycles,2005, 19: 595-605. [30]Richardson K, Beardall J, Raven J A. Adaptation of unicellular algae to irradiance: An analysis of strategies[J]. New Phytologist,1983,93:157-191. [31]Riegman R, Stolte W, Noordeloos A A M,et al. Nutrient uptake and alkaline phosphatase (EC 3∶1∶3∶1) activity of Emiliania huxleyi (Prymnesiophyceae) during growth under N and P limitation in continuous cultures[J].Journal of Phycology,2000, 36:87-96. [32]Nielsen M V. Growth, dark respiration and photosynthetic parameters of the coccolithophorid Emiliania huxleyi (Prymnesiophyceae) acclimated to different day length-irradiance combinations[J].Journal of Phycology,1997,33:818-822. [33]Badger M R, Andrews T J, Whitney S M, et al. The diversity and co-evolution of Rubisco, plastids, pyrenoids and chloroplast-based CO2-concentrating mechanisms in the algae[J]. Canadian Journal of Botany,1998,76:1 052-1 071. [34]Raven J A, Johnston A M. Mechanisms of inorganic carbon acquisition in marine phytoplankton and their implications for the use of other resources[J].Limnology and Oceanography,1991,36:1 701-1 714. [35]Rost B, Riebesell U, Burrkhardt S,et al. Carbon acquisition of bloom-forming marine phytoplankton[J]. Limnology and Oceanography,2003, 48:55-67. [36]Sikes C S, Roer R D, Wilbur K M. Photosynthesis and coccolith formation: Inorganic carbon sources and net inorganic reaction of deposition[J]. Limnology and Oceanography, 1980,25: 248-261. [37]Nimer N A, Merrett M J. Calcification rate in Emiliania huxleyi Lohmann in response to light, nitrate and inorganic carbon availability[J]. New Phytologist,1993,123: 673-677. [38]Clark D R, Flynn K J. The relationship between the dissolved inorganic carbon concentration and growth rate in marine phytoplankton[J]. Proceedings of the Royal Society London B,2000,267:953-959. [39]van Bleijswijk J D L, Kempers R S, Veldhuis M J W,et al. Cell and growth characteristics of types A and B of Emiliania huxleyi (Prymnesiophyceae) as determined by flow cytometry and chemical analyses[J].Journal of Phycology,1994,30:230-241. [40]Paasche E. Roles of nitrogen and phosphorus in coccolith formation in Emiliania huxleyi (Prymnesiophyceae)[J].European Journal of Phycology,1998, 33:33-42. [41]Linschooten C, van Bleijswijk J D L, van Emburg P R, et al. Role of the light-dark cycle and medium composition on the production of coccoliths by Emiliania huxleyi (Haptophyceae)[J]. Journal of Phycology,1991,27:82-86. [42]van Bleijswijk J D L, Kempers E S, Veldhuis M J W. Production and downward flux of organic matter and calcite in the North Sea bloom of the coccolithophore Emiliania huxleyi[J]. Marine Ecology Progress Series, 1995,126:247-265. [43]Holligan P M, Fernandez E, Aiken J, et al. A. geochemical study of the coccolithophore Emiliania huxleyi, in the North Atlantic[J]. Global Biogeochemical Cycles,1993,7(4): 879-900. [44]Paasche E A. Review of the coccolithophorid Emiliania huxleyi (Prymnesiophyceae), with particular reference to growth, coccolith formation, and calcification photosynthesis interactions[J]. Phycologia,2002,40:503-529. [45]Berry L, Taylor A R, Lucken U, et al. Calcification and inorganic carbon: Acquisition in coccolithophores[J].Functional Plant Biology,2002, 29:289-299. [46]Schulz K G, Zondervan I, Gerringa L J A, et al. Effect of trace metal availability on coccolithophorid calcification[J]. Nature,2004, 430:673-676. [47]Brownlee C, Taylor A R. Calcification in coccolithophores: A cellular perspective[C]//Thierstein H R, Young J R,eds. Coccolithophores: From Molecular Processes to Global Impact. Berlin: Springer, 2004:31-49. [48]Horita J, Zimmermann H, Holland H D. Chemical evolution of seawater during the Phanerozoic: Implications from the record of marine evaporates[J]. Geochimica et Cosmochimica Acta,2002,66(21):3 733-3 756. [49]Zondervan I, Rost B, Riebesell U. Effect of CO2 concentration on the PIC/POC ratio in the coccolithophore Emiliania huxleyi grown under light-limiting conditions and different daylengths[J]. Journal of Experimental Marine Biology and Ecology,2002,272: 55-70. [50]Berner R A. Atmospheric carbon dioxide levels over phanerozoic time[J]. Science,1990, 249:1 382-1 386. [51]Petit J R, Jouzel J, Raynaud D, et al. Climate and atmospheric history of the past 420 000 years from the Vostok ice core, Antarctica[J]. Nature,1999, 399:429-436. [52]Houghton J T, Ding Y, Griggs D J, et al,eds. Climate Change 2001: The Scientific Basis: Contributions of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge: Cambridge University Press, 2001:1-375. [53]Tortell P D, Giocoma R D, Sigman D M, et al. CO2 effects on taxonomic composition and nutrient utilization in an Equatorial Pacific phytoplankton assemblage[J]. Marine Ecology Progress Series, 2002, 236:37-43. [54]Wolf-Gladrow D A, Riebesell U, Burkhardt S, et al. Direct effects of CO2 concentrations on growth and isotopic composition of marine plankton[J].Tellus,1999, 51 (2):461-476. [55]Paasche E. A tracer study of the inorganic carbon uptake during coccolith formation and photosynthesis in the coccolithophorid Coccolithus huxleyi[J]. Physiology Plantarum,1964, 18:138-145. [56]Nielsen M V. Photosynthetic characteristics of the coccolithophorid Emiliania huxleyi (Prymnesiophyceae) exposed to elevated concentrations of dissolved inorganic carbon[J]. Journal of Phycology,1995,31:715-719. [57]Riebesell U, Zondervan I, Rost B, et al. Reduced calcification of marine plankton in response of increased atmospheric CO2[J]. Nature, 2000, 407:364-367. [58]Paasche E. Marine plankton algae grown with light-dark cycle. I. Coccolithus huxleyi[J]. Physiology Plantarum,1967, 20:946-956. [59]Nanninga H J, Tyrrell T. Importance of light for the formation of algal blooms by Emiliania huxleyi[J]. Marine Ecology Progress Series, 1996, 136:195-203. [60]Van der Wal P, Kempers R S, Veldhuis M J W. Production and downward flux of organic matter and calcite in a North Sea bloom of the coccolithophore Emiliania huxleyi[J]. Marine Ecology Progress Series, 1995, 126:247-265. [61]Paasche E. Reduced coccolith calcite production under light-limited growth: A comparative study of three clones of Emiliania huxleyi(Prymnesiophyceae)[J]. Phycologia, 1999,38:508-516. [62]Balch W M, Holligan P M,Kilpatrick K A. Calcification, photosynthesis and growth of the bloom-forming coccolithophore, Emiliania huxleyi[J]. Continental Shelf Research,1992,12:1 353-1 374. [63]Tyrrell T, Taylor A H. A modeling study of Emiliania huxleyi in the NE Atlantic[J]. Journal of Marine System, 1996,9:83-112. [64]Paasche E, Brubak S. Enhanced calcification in the coccolithophorid Emiliania huxleyi (Haptophyceae) under phosphorus limitation[J]. Phycologia, 1994,33:324-330. [65]Riegman R, Noordeloos A A M, Cadée G C. Phaeocystis blooms and eutrophication of the continental coastal zones of the North Sea[J]. Marine Biology, 1992, 112:479-484. [66]Egge J K, Aksnes D L. Silicate as regulating nutrient in phytoplankton competition[J]. Marine Ecology Progress Series,1992, 83:281-289. [67]Okada H, Honjo S. The distribution of oceanic coccolithophorids in the Pacific[J]. Deep-Sea Research, 1973,20:355-374. [68]Okada H, Honjo S. Distribution of Coccolithophores in Marginal Seas along the Western Pacific ocean and in the Red Sea[J]. Marine Biology, 1975, 31:271-285. [69]Honjo S, Okada H. Community structure of coccolithophores in the photic layer of the mid-Pacific[J]. Micropaleontology, 1974, 29:209-230. [70]Okada H, McIntyre A. Modern coccolithophores of the Pacific and North Atlantic Oceans[J]. Micropaleontology, 1977, 23(1):1-55. [71]Reid F M H. Coccolithophorids of the north Pacific central gyre with notes on their vertical and seasonal distribution[J]. Micropaleontology, 1980,26(2):151-176. [72]Zhang J J, Siesser W G. Calcareous nanoplankton in continental-shelf sediments, east China sea[J]. Microplaleontology, 1986, 32(3):271-281. [73]Zhong Shilan, Wang Yaping, Gao Shu, et al. Distribution patterns of nannofossil Gephyrocapsa oceanica in surficial sediments of Jiaozhou bay, southern Shandong peninsula, China[J]. Acta Palaoantologica Sinica, 2001, 40(4):505-513. [钟石兰,汪亚平,高抒, 等.胶州湾表层沉积颗石藻Gephyrocapsa oceanica的分布模式及其与环境的关系[J].古生物学报,2001,40(4):505-513.] [74]Chen X R, Wang P X.Controlling factor of coccolith distribution in surface sediments of the China seas: Marginal sea nannofossil assemblages revisited[J].Marine Micropaleontology,1997,32: 155-172. [75]Wang P X,Cheng X R.Distribution of calcareous nannoplankton in the East China Sea[C]//Wang P X, ed. Marine Micropaieontology of China. Beijing:China Ocean Press, Springer Verlag, 1985:218-228. [76]Wang P X, Samtleben C. Calcareous nannoplankton in surface sediments of surfaces sediments of the east China sea[J]. Marine Micropaleontology,1983,8: 249-259. [77]Zhong Shilan,Lu Jun.Quaternary Calcareous Nannoplankton From the Nansha sea area in the south China Sea. Quaternary Biological Groups of the Nansha Islands and the Neighboring Waters[M]. Guangzhou: Zhongshan University Publishing House, 1991:199-238. [78]Cao Qiyuan, Cang Shuxi, Li Tiegang, et al. Distribution of calcareous nannofossils in surface sediment of the northern Okinawa trough and their environmental characteristics[J].Oceanologia et Limnologia Sinica, 2002. 33(6):600-607. [曹奇原,苍树溪,李铁刚, 等.冲绳海槽北部表层沉积物中的钙质超微化石及其环境特征[J].海洋与湖沼, 33(6):600-607.] [79]Furuya K, Kurita K, Odate T. Distribution of phytoplankton in the east China sea in the winter of 1993[J]. Journal of Oceanography,1996,52:323-333. [80]Hagino K, Okada H, Matsuoka H. Spatial dynamics of coccolithophore assemblages in the Equatorial Western-Central Pacific Ocean[J]. Marine Micropaleontology,2000, 39:53-72. [81]Hagino K, Okada H, Matsuoka H. Coccolithophore assemblages and morphotypes of Emiliania huxleyi in the boundary zone between the cold Oyashio andwarm Kuroshio currents off the coast of Japan[J]. Marine Micropaleontology,2005, 55:19-47. [82]Yang T N, Wei K Y, Chen L L. Occurrence of coccolithophorids in the northeastern and central south China sea[J].Taiwania, 2003, 48:29-45. [83]Yang T N, Wei K Y, Chen M P, et al. Summer and winter distribution and malformation of coccolithophores in the East China sea[J]. Micropaleontology, 2004, 50:157-170. [84]Yang T N, Wei K Y, Gong G C. Distribution of coccolithophorids and coccoliths in surface ocean of northeastern Taiwan[J]. Botanical Bulletin of Academia Sinica, 2001,42(4):287-302. [85]Chen Y L, Chen H Y, Chung C W.Seasonal variability of coccolithophore abundance and assemblage in the northern south China sea[J].Deep Sea Research II: Topical Studies in Oceanography,2007,54(14/15):1 617-1 633. [86]Chen M P, Shieh K S. Recent nannofossil assemblages in sediments from Sunda Shelf to Abyssal Plain, south China sea[C]. Proceedings of the National Science Council (ROC), Part A, 1982, 6:250-285. [87]Cheng X R. Calcareous nannofossil in surface sediments of central and northern parts of the south China sea [J]. Journal of Micropaleontology, 1992, 11:167-176. [88]Cheng X R, Wang P X. Controlling factors of coccolith distribution in surface sediments of the China seas: Marginal sea nannofossil assemblages revisited [J]. Marine Micropaleontology,1997, 32:155-172. [89]Winter A R, Jordan W, Roth P H. Biogeography of living coccolithophores in ocean waters[C]//Winter A, Siesser W G,eds. Coccolithophores.Cambridge:Cambridge University Press, 1994:161-177. [90]Wyrtki K. Physical Oceanography of the South-East Asian Water. Scientific Results of Marine Investigation of the South China Sea and Gulf of Thailand 1959-1961[R].Naga Report,1961:2. [91]Wang G H, Su J L, Peter C. Mesoscale eddies in the South China Sea observed with altimeter data[J].Geophysical research Letters,2000, 30(21):1-4. |