地球科学进展 ›› 2007, Vol. 22 ›› Issue (12): 1231 -1239. doi: 10.11867/j.issn.1001-8166.2007.12.1231

综述与评述 上一篇    下一篇

今生颗石藻的有机碳泵和碳酸盐反向泵
孙军   
  1. 中国科学院海洋研究所海洋生态与环境科学重点实验室,山东 青岛 266071
  • 收稿日期:2007-04-13 修回日期:2007-10-08 出版日期:2007-12-10
  • 通讯作者: 孙军(1972-),男,甘肃华亭人,研究员,主要从事海洋浮游生物生态学研究.E-mail:phytoplankton@163.com E-mail:phytoplankton@163.com
  • 基金资助:

    国家自然科学基金项目“南海今生颗石藻生物泵—碳酸盐反向泵耦合机制研究”(编号: 40776093)资助.

Organic Carbon Pump and Carbonate Counter Pump of Living Coccolithophorid

SUN Jun   

  1. Key Laboratory of Marine Ecology & Environmental Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
  • Received:2007-04-13 Revised:2007-10-08 Online:2007-12-10 Published:2007-12-10

海洋今生颗石藻同时具有有机碳生产和钙化作用两个过程,对海洋碳的生物地球化学循环具有重要作用。今生颗石藻通过有机碳泵(生物泵)和碳酸盐反向泵调节大气p(CO2),最终影响全球的气候变化。介绍了今生颗石藻对全球气候变化的影响,重点讨论其碳酸盐反向泵过程,从今生颗石藻碳酸盐反向泵的生理学基础、钙化作用与光合作用的耦合机制、全球气候变化下今生颗石藻的有机碳泵和碳酸盐反向泵耦合机制改变等几个方面进行了描述。对中国近海今生颗石藻的研究进行了展望。

The intrinsic coupling of organic matter production and calcification in marine living coccolithophorid (LC) blooms underlines their biogeochemical importance in the marine carbon cycle. This intimate coupling of the two pumps, “organic carbon pump (OCP)” and “carbonate counter pump (CCP)” in LC, has been considered to be responsible for regulating the atmospheric p(CO2), thus affect the global climate change (GCC). The effects of CCP on GCC have been reported, especially on CCP processes. It include physiological base of CCP, coupling mechanism of calcification and photosynthesis, and its changes under GCC. Progress and prospect of LC study in China Sea Waters were reported. The South China Sea (SCS) tentatively be chosen as typical study area, three objects was selected: (1) biogeography of LC in SCS; (2) physiological ecological study of keystone species Emiliania huxleyi and Gephyrocapsa oceanica on CCP and OCP processes; (3) Increased CO2, temperature and light conditions affect the nature phytoplankton community development in SCS; (4) Ecological modeling study coupling of CCP and OCP.

中图分类号: 

[1]IPCC (Intergovernmental Panel on Climate Change). Climate Change 2007: The Physical Science Basis—Summary for Policymakers, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change[R]. Switzerland: IPCC Secretariat, 2007:1-18.
[2]Post W M, Peng T H, Emanuel W R, et al. The global carbon cycle[J]. American Scientist, 1990, 78(4):310-326.
[3]Kleypas J A, Feely R A, Fabry V J, et al. Impacts of Ocean Acidification on Coral Reefs and Other Marine Calcifiers: A Guide for Future Research[R]. Report of a Workshop Held 18-20 April 2005, St. Petersburg, FL, Sponsored by NSF, NOAA and the US Geological Survey,2006:1-88.
[4]Martin J, Fitzwater S, Gordon R. Iron deficiency limits phytoplankton growth in Antarctic waters[J]. Global Biogeochemical Cycles, 1990,4(1):5-12.
[5]Adhiya J, Chisholm S W. Is Ocean Fertilization Worth Pursuing as a Carbon Sequestration Option?[R]. A White Paper Prepared for the Center for Environmental Initiatives at MIT,2001:1-58.
[6]Zeng Chengkui, Bi Liejue, eds. A Glossary of Terms and Names of algae[M]. Beijing: Science Press,2005: 1-436. [曾呈奎, 毕列爵,主编.藻类学名词及名称[M]. 北京: 科学出版社,2005:1-436.]
[7]Jordan R W, Kleijne A. A classification system for living coccolithophores[C]//Winter A, Siesser W G, eds. Coccolithophores. Cambridge: Cambridge University Press, 1994:83-106.
[8]Sorby H C. On the organic origin of the so-called. crystalloids’ of the chalk[J]. Annals and Magazine of Natural History,1861,3(8):193-200.
[9]Siesser W G. Historical background of coccolithophore studies[C]//Winter A, Siesser W G, eds. Coccolithophores. Cambridge: Cambridge University Press,1994:1-11.
[10]Murray J, Renard A F. Deep-Sea Deposits[C]//Scientific Reports of the   Voyage H M S Challenger.1891:1-525.
[11]Lohmann H. Die Coccolithophoridae[J]. Arch Protistenk, 1902, 1:89-165.
[12]Marshall S M. The production of microplankton in the Great Barrier Reef region in British museum grent barrier reef expedition 1928-1929[J].Science Report,1933, 2(3):111-157.
[13]Silva E S. O microplâncton de superfície nos meses de Setembro e Outubro na estacáo de Inhaca (Moác,cmbique)[J]. Memory Junta Invest Ultram,1960, 18(2):75-96.
[14]Paasche E. A review of the coccolithophorid Emiliania huxleyi (Prymnesiophyceae), with particular reference to growth, coccolith formation, and calcification-photosynthesis interactions[J]. Phycologia, 2002,40(6):503-529.
[15]Brown C W, Yoder J A. Coccolithophorid blooms in the global ocean[J]. Journal of Geophysical Research, 1994,99(C): 7 467-7 482.
[16]Balch W M, Kipatrick K A. Calcification rates in the Equatorial Pacific along 140°W[J]. Deep-Sea Research II, 1996, 43:971-993.
[17]Tyrrell T, Holligan P M, Mobley C D. Optical impacts of oceanic coccolithophore blooms[J]. Journal of Geophysical Research,1999,104:3 223-3 241.
[18]Keller M D, Bellows W K, Guillard R R L. Dimethyl sulfide production in marine phytoplankton: Review[C].ACS Symposium Series, 1989, 393:167-182.
[19]Bown P R, Lees J A, Young J R. Calcareous nannoplankton evolution and diversity through time[C]//Thierstein H R, Young J R, eds. Coccolithophores: From Molecular Processes to Global impact. Berlin: Springer, 2004:481-508.
[20]Morse J W, Mackenzie F T. Geochemistry of Sedimentary Carbonates[M]. Amsterdam: Elsevier, 1990:1-707. 
[21]Rost B, Riebesell U. Coccolithophores and the biological pump: responses to environmental changes[C]//Thierstein H R, Young J R,eds. Coccolithophores: From Molecular Processes to Global impact. Berlin: Springer,2004:99-127.
[22]Zondervan I, Zeebe R E, Rost B, et al. Decreasing marine biogenic calcification: A negative feedback on rising atmospheric p(CO2)[J]. Global Biogeochemical Cycles, 2001, 15(2):507-516.
[23]Purdie D A, Finch M S. Impact of a coccolithophorid on dissolved carbon dioxide in sea: Water enclosures in a Norwegian fjord[J]. Sarsia, 1994, 79(4):379-487.
[24]Robertson J E, Robinson C, Turner D R, et al. The impact of a coccolithophore bloom on oceanic carbon uptake in the northeast Atlantic during summer 1991[J]. Deep-Sea Research I,1994,41(2):297-314.
[25]Buitenhuis E, van Bleijswijk J, Bakker D C E, et al. Trends in inorganic and organic carbon in a bloom of Emiliania huxleyi in the North Sea[J]. Marine Ecology Progress Series, 1996, 143:271-282.
[26]Head R N, Crawford D W, Egge J K, et al. The hydrography and biology of a bloom of the coccolithophorid Emiliania huxleyi in the northern North Sea[J]. Journal of Sea Research,1998, 39(3/4): 255-266.
[27]Armstrong R A, Lee C, Hedges J I, et al. A new, mechanistic model for organic carbon fluxes in the ocean based on the quantitative association of POC with ballast minerals[J]. Deep Sea Research II: Topical Studies in Oceanography,2001, 49(1/3): 219-236.
[28]Klaas C, Archer D E. Association of sinking organic matter with various types of mineral ballast in the deep sea: Implications for the rain ratio[J]. Global Biogeochemical Cycles,2002,16(4):1 116-1 130.
[29]Delille B, Harlay J, Zondervan I, et al. Response of primary production and calcification to changes of p(CO2) during experimental blooms of the coccolithophorid Emiliania huxleyi[J]. Global Biogeochemical Cycles,2005, 19: 595-605.
[30]Richardson K, Beardall J, Raven J A. Adaptation of unicellular algae to irradiance: An analysis of strategies[J]. New Phytologist,1983,93:157-191.
[31]Riegman R, Stolte W, Noordeloos A A M,et al. Nutrient uptake and alkaline phosphatase (EC 3∶1∶3∶1) activity of Emiliania huxleyi (Prymnesiophyceae) during growth under N and P limitation in continuous cultures[J].Journal of Phycology,2000, 36:87-96.
[32]Nielsen M V. Growth, dark respiration and photosynthetic parameters of the coccolithophorid Emiliania huxleyi (Prymnesiophyceae) acclimated to different day length-irradiance combinations[J].Journal of Phycology,1997,33:818-822.
[33]Badger M R, Andrews T J, Whitney S M, et al. The diversity and co-evolution of Rubisco, plastids, pyrenoids and chloroplast-based CO2-concentrating mechanisms in the algae[J]. Canadian Journal of Botany,1998,76:1 052-1 071.
[34]Raven J A, Johnston A M. Mechanisms of inorganic carbon acquisition in marine phytoplankton and their implications for the use of other resources[J].Limnology and Oceanography,1991,36:1 701-1 714.
[35]Rost B, Riebesell U, Burrkhardt S,et al. Carbon acquisition of bloom-forming marine phytoplankton[J]. Limnology and Oceanography,2003, 48:55-67.
[36]Sikes C S, Roer R D, Wilbur K M. Photosynthesis and coccolith formation: Inorganic carbon sources and net inorganic reaction of deposition[J]. Limnology and Oceanography, 1980,25: 248-261.
[37]Nimer N A, Merrett M J. Calcification rate in Emiliania huxleyi Lohmann in response to light, nitrate and inorganic carbon availability[J]. New Phytologist,1993,123: 673-677.
[38]Clark D R, Flynn K J. The relationship between the dissolved inorganic carbon concentration and growth rate in marine phytoplankton[J]. Proceedings of the Royal Society London B,2000,267:953-959.
[39]van Bleijswijk J D L, Kempers R S, Veldhuis M J W,et al. Cell and growth characteristics of types A and B of Emiliania huxleyi (Prymnesiophyceae) as determined by flow cytometry and chemical analyses[J].Journal of Phycology,1994,30:230-241.
[40]Paasche E. Roles of nitrogen and phosphorus in coccolith formation in Emiliania huxleyi (Prymnesiophyceae)[J].European Journal of Phycology,1998, 33:33-42. 
[41]Linschooten C, van Bleijswijk J D L, van Emburg P R, et al. Role of the light-dark cycle and medium composition on the production of coccoliths by Emiliania huxleyi (Haptophyceae)[J]. Journal of Phycology,1991,27:82-86.
[42]van Bleijswijk J D L, Kempers E S, Veldhuis M J W. Production and downward flux of organic matter and calcite in the North Sea bloom of the coccolithophore Emiliania huxleyi[J]. Marine Ecology Progress Series, 1995,126:247-265.
[43]Holligan P M, Fernandez E, Aiken J, et al. A. geochemical study of the coccolithophore Emiliania huxleyi, in the North Atlantic[J]. Global Biogeochemical Cycles,1993,7(4): 879-900.
[44]Paasche E A. Review of the coccolithophorid Emiliania huxleyi (Prymnesiophyceae), with particular reference to growth, coccolith formation, and calcification photosynthesis interactions[J]. Phycologia,2002,40:503-529.
[45]Berry L, Taylor A R, Lucken U, et al. Calcification and inorganic carbon: Acquisition in coccolithophores[J].Functional Plant Biology,2002, 29:289-299.
[46]Schulz K G, Zondervan I, Gerringa L J A, et al. Effect of trace metal availability on coccolithophorid calcification[J]. Nature,2004, 430:673-676.
[47]Brownlee C, Taylor A R. Calcification in coccolithophores: A cellular perspective[C]//Thierstein H R, Young J R,eds. Coccolithophores: From Molecular Processes to Global Impact. Berlin: Springer, 2004:31-49.
[48]Horita J, Zimmermann H, Holland H D. Chemical evolution of seawater during the Phanerozoic: Implications from the record of marine evaporates[J]. Geochimica et Cosmochimica Acta,2002,66(21):3 733-3 756.
[49]Zondervan I, Rost B, Riebesell U. Effect of CO2 concentration on the PIC/POC ratio in the coccolithophore Emiliania huxleyi grown under light-limiting conditions and different daylengths[J]. Journal of Experimental Marine Biology and Ecology,2002,272: 55-70.
[50]Berner R A. Atmospheric carbon dioxide levels over phanerozoic time[J]. Science,1990, 249:1 382-1 386.
[51]Petit J R, Jouzel J, Raynaud D, et al. Climate and atmospheric history of the past 420 000 years from the Vostok ice core, Antarctica[J]. Nature,1999, 399:429-436.
[52]Houghton J T, Ding Y, Griggs D J, et al,eds. Climate Change 2001: The Scientific Basis: Contributions of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge: Cambridge University Press, 2001:1-375.
[53]Tortell P D, Giocoma R D, Sigman D M, et al. CO2 effects on taxonomic composition and nutrient utilization in an Equatorial Pacific phytoplankton assemblage[J]. Marine Ecology Progress Series, 2002, 236:37-43.
[54]Wolf-Gladrow D A, Riebesell U, Burkhardt S, et al. Direct effects of CO2 concentrations on growth and isotopic composition of marine plankton[J].Tellus,1999, 51 (2):461-476.
[55]Paasche E. A tracer study of the inorganic carbon uptake during coccolith formation and photosynthesis in the coccolithophorid Coccolithus huxleyi[J]. Physiology Plantarum,1964, 18:138-145.
[56]Nielsen M V. Photosynthetic characteristics of the coccolithophorid Emiliania huxleyi (Prymnesiophyceae) exposed to elevated concentrations of dissolved inorganic carbon[J]. Journal of Phycology,1995,31:715-719.
[57]Riebesell U, Zondervan I, Rost B, et al. Reduced calcification of marine plankton in response of increased atmospheric CO2[J]. Nature, 2000, 407:364-367.
[58]Paasche E. Marine plankton algae grown with light-dark cycle. I. Coccolithus huxleyi[J]. Physiology Plantarum,1967, 20:946-956.
[59]Nanninga H J, Tyrrell T. Importance of light for the formation of algal blooms by Emiliania huxleyi[J]. Marine Ecology Progress Series, 1996, 136:195-203.
[60]Van der Wal P, Kempers R S, Veldhuis M J W. Production and downward flux of organic matter and calcite in a North Sea bloom of the coccolithophore Emiliania huxleyi[J]. Marine Ecology Progress Series, 1995, 126:247-265.
[61]Paasche E. Reduced coccolith calcite production under light-limited growth: A comparative study of three clones of Emiliania huxleyi(Prymnesiophyceae)[J]. Phycologia, 1999,38:508-516.
[62]Balch W M, Holligan P M,Kilpatrick K A. Calcification, photosynthesis and growth of the bloom-forming coccolithophore, Emiliania huxleyi[J]. Continental Shelf Research,1992,12:1 353-1 374.
[63]Tyrrell T, Taylor A H. A modeling study of Emiliania huxleyi in the NE Atlantic[J]. Journal of Marine System, 1996,9:83-112.
[64]Paasche E, Brubak S. Enhanced calcification in the coccolithophorid Emiliania huxleyi (Haptophyceae) under phosphorus limitation[J]. Phycologia, 1994,33:324-330.
[65]Riegman R, Noordeloos A A M, Cadée G C. Phaeocystis blooms and eutrophication of the continental coastal zones of the North Sea[J]. Marine Biology, 1992, 112:479-484.
[66]Egge J K, Aksnes D L. Silicate as regulating nutrient in phytoplankton competition[J]. Marine Ecology Progress Series,1992, 83:281-289.
[67]Okada H, Honjo S. The distribution of oceanic coccolithophorids in the Pacific[J]. Deep-Sea Research, 1973,20:355-374.
[68]Okada H, Honjo S. Distribution of Coccolithophores in Marginal Seas along the Western Pacific ocean and in the Red Sea[J]. Marine Biology, 1975, 31:271-285.
[69]Honjo S, Okada H. Community structure of coccolithophores in the photic layer of the mid-Pacific[J]. Micropaleontology, 1974, 29:209-230.
[70]Okada H, McIntyre A. Modern coccolithophores of the Pacific and North Atlantic Oceans[J]. Micropaleontology, 1977, 23(1):1-55.
[71]Reid F M H. Coccolithophorids of the north Pacific central gyre with notes on their vertical and seasonal distribution[J]. Micropaleontology, 1980,26(2):151-176.
[72]Zhang J J, Siesser W G. Calcareous nanoplankton in continental-shelf sediments, east China sea[J]. Microplaleontology, 1986, 32(3):271-281.
[73]Zhong Shilan, Wang Yaping, Gao Shu, et al. Distribution patterns of nannofossil Gephyrocapsa oceanica in surficial sediments of Jiaozhou bay, southern Shandong peninsula, China[J]. Acta Palaoantologica Sinica, 2001, 40(4):505-513. [钟石兰,汪亚平,高抒, 等.胶州湾表层沉积颗石藻Gephyrocapsa oceanica的分布模式及其与环境的关系[J].古生物学报,2001,40(4):505-513.]
[74]Chen X R, Wang P X.Controlling factor of coccolith distribution in surface sediments of the China seas: Marginal sea nannofossil assemblages revisited[J].Marine Micropaleontology,1997,32: 155-172.
[75]Wang P X,Cheng X R.Distribution of calcareous nannoplankton in the East China Sea[C]//Wang P X, ed. Marine Micropaieontology of China. Beijing:China Ocean Press, Springer Verlag, 1985:218-228.
[76]Wang P X, Samtleben C. Calcareous nannoplankton in surface sediments of surfaces sediments of the east China sea[J]. Marine Micropaleontology,1983,8: 249-259.
[77]Zhong Shilan,Lu Jun.Quaternary Calcareous Nannoplankton From the Nansha sea area in the south China Sea. Quaternary Biological Groups of the Nansha Islands and the Neighboring Waters[M]. Guangzhou: Zhongshan University Publishing House, 1991:199-238.
[78]Cao Qiyuan, Cang Shuxi, Li Tiegang, et al. Distribution of calcareous nannofossils in surface sediment of the northern Okinawa trough and their environmental characteristics[J].Oceanologia et Limnologia Sinica, 2002. 33(6):600-607. [曹奇原,苍树溪,李铁刚, 等.冲绳海槽北部表层沉积物中的钙质超微化石及其环境特征[J].海洋与湖沼, 33(6):600-607.]
[79]Furuya K, Kurita K, Odate T. Distribution of phytoplankton in the east China sea in the winter of 1993[J]. Journal of Oceanography,1996,52:323-333.
[80]Hagino K, Okada H, Matsuoka H. Spatial dynamics of coccolithophore assemblages in the Equatorial Western-Central Pacific Ocean[J]. Marine Micropaleontology,2000, 39:53-72.
[81]Hagino K, Okada H, Matsuoka H. Coccolithophore assemblages and morphotypes of Emiliania huxleyi in the boundary zone between the cold Oyashio andwarm Kuroshio currents off the coast of Japan[J]. Marine Micropaleontology,2005, 55:19-47.
[82]Yang T N, Wei K Y, Chen L L. Occurrence of coccolithophorids in the northeastern and central south China sea[J].Taiwania, 2003, 48:29-45.
[83]Yang T N, Wei K Y, Chen M P, et al. Summer and winter distribution and malformation of coccolithophores in the East China sea[J]. Micropaleontology, 2004, 50:157-170.
[84]Yang T N, Wei K Y, Gong G C. Distribution of coccolithophorids and coccoliths in surface ocean of northeastern Taiwan[J]. Botanical Bulletin of Academia Sinica, 2001,42(4):287-302.
[85]Chen Y L, Chen H Y, Chung C W.Seasonal variability of coccolithophore abundance and assemblage in the northern south China sea[J].Deep Sea Research II: Topical Studies in Oceanography,2007,54(14/15):1 617-1 633.
[86]Chen M P, Shieh K S. Recent nannofossil assemblages in sediments from Sunda Shelf to Abyssal Plain, south China sea[C]. Proceedings of the National Science Council (ROC), Part A, 1982, 6:250-285.
[87]Cheng X R. Calcareous nannofossil in surface sediments of central and northern parts of the south China sea [J]. Journal of Micropaleontology, 1992, 11:167-176.
[88]Cheng X R, Wang P X. Controlling factors of coccolith distribution in surface sediments of the China seas: Marginal sea nannofossil assemblages revisited [J]. Marine Micropaleontology,1997, 32:155-172.
[89]Winter A R, Jordan W, Roth P H. Biogeography of living coccolithophores in ocean waters[C]//Winter A, Siesser W G,eds. Coccolithophores.Cambridge:Cambridge University Press, 1994:161-177.
[90]Wyrtki K. Physical Oceanography of the South-East Asian Water. Scientific Results of Marine Investigation of the South China Sea and Gulf of Thailand 1959-1961[R].Naga Report,1961:2.
[91]Wang G H, Su J L, Peter C. Mesoscale eddies in the South China Sea observed with altimeter data[J].Geophysical research Letters,2000, 30(21):1-4.

[1] 史培军, 王爱慧, 孙福宝, 李宁, 叶涛, 徐伟, 王静爱, 杨建平, 周洪建. 全球变化人口与经济系统风险形成机制及评估研究[J]. 地球科学进展, 2016, 31(8): 775-781.
[2] 黄邦钦, 柳欣. 边缘海浮游生态系统对生物泵的调控作用[J]. 地球科学进展, 2015, 30(3): 385-395.
[3] 任国玉, 任玉玉, 李庆祥, 徐文慧. 全球陆地表面气温变化研究现状、问题和展望[J]. 地球科学进展, 2014, 29(8): 934-946.
[4] 高涛, 谢立安. 近50年来中国极端降水趋势与物理成因研究综述[J]. 地球科学进展, 2014, 29(5): 577-589.
[5] 邬建国, 何春阳, 张庆云, 于德永, 黄甘霖, 黄庆旭. 全球变化与区域可持续发展耦合模型及调控对策[J]. 地球科学进展, 2014, 29(12): 1315-1324.
[6] 陈泮勤,程邦波,王芳,曲建升. 全球气候变化的几个关键问题辨析[J]. 地球科学进展, 2010, 25(1): 69-75.
[7] 刘小茜,王仰麟,彭建. 人地耦合系统脆弱性研究进展[J]. 地球科学进展, 2009, 24(8): 917-928.
[8] 申彦波,赵宗慈,石广玉. 地面太阳辐射的变化、影响因子及其可能的气候效应最新研究进展[J]. 地球科学进展, 2008, 23(9): 915-924.
[9] 许强,陈伟,张倬元. 对我国西南地区河谷深厚覆盖层成因机理的新认识[J]. 地球科学进展, 2008, 23(5): 448-456.
[10] 曲建升,葛全胜,张雪芹. 全球变化及其相关科学概念的发展与比较[J]. 地球科学进展, 2008, 23(12): 1277-1284.
[11] 张强;韩永翔;宋连春. 全球气候变化及其影响因素研究进展综述[J]. 地球科学进展, 2005, 20(9): 990-998.
[12] 吴金水;童成立;刘守龙. 亚热带和黄土高原区耕作土壤有机碳对全球气候变化的响应[J]. 地球科学进展, 2004, 19(1): 131-137.
[13] 李晶莹,张经. 流域盆地的风化作用与全球气候变化[J]. 地球科学进展, 2002, 17(3): 411-419.
[14] 张远辉,王伟强,陈立奇. 海洋二氧化碳的研究进展[J]. 地球科学进展, 2000, 15(5): 559-564.
[15] 郑景云,葛全胜,张丕远. 气候突变:史实与意义[J]. 地球科学进展, 1999, 14(2): 177-182.
阅读次数
全文


摘要