地球科学进展 ›› 2013, Vol. 28 ›› Issue (8): 859 -865. doi: 10.11867/j.issn.1001-8166.2013.08.0859

综述与评述 上一篇    下一篇

海表层二氧化碳分压之时间序列研究进展
薛亮,于卫东,宁春林,王辉武   
  1. 国家海洋局第一海洋研究所 海洋与气候研究中心,山东 青岛 266061
  • 收稿日期:2013-02-14 修回日期:2013-04-19 出版日期:2013-08-10
  • 基金资助:

    国家海洋局第一海洋研究所基本科研业务专项“深海气候观测浮标集成系统”(编号:GY022012T03)资助.

Advances in Sea Surface Partial Pressure of CO 2 Time-Series Studies

Xue Liang, Yu Weidong, Ning Chunlin, Wang Huiwu   

  1. Center for Ocean and Climate Research, First Institute of Oceanography, State Oceanic Administration, Qingdao 266061, China
  • Received:2013-02-14 Revised:2013-04-19 Online:2013-08-10 Published:2013-08-10

简要总结了海表层二氧化碳分压(pCO2)时间序列的研究方法,重点综述了时间序列研究在确定pCO2控制过程、揭示pCO2年际差异、监测气候事件对pCO2的影响及估算海—气二氧化碳(CO2)通量等方面的研究进展。海表层pCO2时间序列的研究方法大致可以分为2类,一类是基于船舶调查,另一类是基于浮标的CO2自动测定。时间序列研究除了能够定性地记录和追踪一些特殊和偶然的物理和生物过程对pCO2的影响外,还能够定量地给出各种过程对pCO2变化的贡献,这对揭示海洋pCO2的控制机理有着重要意义。年际尺度的时间序列观测表明:人类活动已经造成了海表层pCO2的增加,厄尔尼诺事件和拉尼娜事件对海表层pCO2和海—气CO2通量有明显影响。另外,时间序列研究能够提高海—气CO2通量估算的准确性。

The method of sea surface partial pressure of CO2 (pCO2) timeseries studies is simply summarized, and the advances in indentifying pCO2controlling processes, revealing interannual variability in pCO2, monitoring the influence of some climatic events on pCO2, and estimating airsea CO2 fluxes based on timeseries studies are reviewed in detail. Generally, pCO2 time-series studies are conducted by ship-based investigation and autonomous buoy CO2 measurement. Besides some qualitative observation of irregular and episodic events that influence pCO2, timeseries study could quantitively calculate separate contribution of various controlling processes to pCO2 variation, which is of importance for revealing pCO2 controlling mechanisms. Moreover, time-series studies on interannual time-scales show that human activities have caused the increase of sea surface pCO2. As well, El Nio and La Nina events could significantly influence sea surface pCO2 and air-sea CO2 fluxes. In addition, it is crucial to conduct time-series studies for improving the estimation of air-sea CO2 fluxes.

中图分类号: 

[1]Sabine C L, Feely R A, Gruber N, et al. The oceanic sink for anthropogenic CO2[J]. Science, 2004, 305: 367-371.

[2]Gruber N, Gloor M, Mikaloff Fletcher S E, et al. Oceanic sources, sinks, and transport of atmospheric CO2[J]. Global Biogeochemical Cycles, 2009: GB1005, doi: 10.1029/2008GB003349.

[3]Takahashi T, Sutherland S C, Wanninkhof R, et al. Climatological mean and decadal change in surface ocean pCO2, and net sea-air CO2 flux over the global oceans[J]. Deep-Sea Research Ⅱ, 2009, 56 (8/10): 554-577.

[4]Vandemark D, Salisbury J E, Hunt C W, et al. Temporal and spatial dynamics of CO2 air-sea flux in the Gulf of Maine[J]. Journal of Geophysical Research, 2011, 116: C01012, doi: 10.1029/2010JC006408.

[5]Xue L, Zhang L, Cai W J, et al. Air-sea CO2 fluxes in the southern Yellow Sea: An examination of the continental shelf pump hypothesis[J]. Continental Shelf Research, 2011, 31: 1 904-1 914.

[6]Zhang L, Xue L, Song M, et al. Distribution of the surface partial pressure of CO2 in the southern Yellow Sea and its controls[J]. Continental Shelf Research, 2010, 30: 293-304.

[7]Dai M, Lu Z, Zhai W, et al. Diurnal variations of surface seawater pCO2 in contrasting coastal environments[J]. Limnology and Oceanography, 2009, 54(3): 735-745.

[8]Yan Hongqiang, Yu Kefu, Shi Qi, et al. Coral reef systems in the South China Sea as a source of atmospheric CO2[J]. China Science Bulletin, 2011, 56(6): 414-422.[严宏强,余克服,施祺,等. 南海珊瑚礁夏季是大气 CO2的源[J].科学通报, 2011, 56(6): 414-422.]

[9]Boyd P W, Doney S C. The impac of climate change and feedback Process on the Ocean Carbon Cycle[C]∥Fasham M J R, ed. Ocean  Biogeochemistry.Berlin: Springer, 2003: 157-193.

[10]Doney S C, Tilbrook B, Roy S, et al. Surface-ocean CO2 variability and vulnerability[J]. Deep-Sea Research Ⅱ, 2009, 56(8/10): 504-511.

[11]Ducklow H W, Doney S C, Steinberg D K. Contributions of long-term research and time-series observations to marine ecology and biogeochemistry[J]. Annual Review of Marine Science, 2009, 1(1): 279-302.

[12]Bates N R, Takahashi T, Chipman D W, et al. Variability of pCO2 on diel to seasonal timescales in the Sargasso Sea near Bermuda[J]. Journal of Geophysical Research, 1998, 103(C8): 15 567-15 585.

[13]Bates N R. Interannual variability of the oceanic CO2 sink in the subtropical gyre of the North Atlantic Ocean over the last 2 decades[J]. Journal of Geophysical Research, 2007, 112(C9): C9013.

[14]Santana-Casiano J M, González-Dávila M, Rueda M, et al. The interannual variability of oceanic CO2 parameters in the northeast Atlantic subtropical gyre at the ESTOC site[J]. Global Biogeochemical Cycles, 2007, 21: GB1015, doi: 10.1029/2006GB002788.

[15]Keeling C D, Brix H, Gruber N. Seasonal and long-term dynamics of the upper ocean carbon cycle at Station ALOHA near Hawaii[J]. Global Biogeochemical Cycles, 2004, 18: GB4006, doi: 10.1029/2004GB002227.

[16]Sheu D D, Chou W, Wei C, et al. Influence of El Niño on the sea-to-air CO2 flux at the SEATS time-series site, northern South China Sea[J]. Journal of Geophysical Research, 2010, 115: C10021, doi:10.1029/2009JC006013.

[17]Friederich G E, Brewer P G, Herlien R, et al. Measurement of sea surface partial pressure of CO2 from a moored buoy[J]. Deep-Sea Research Ⅰ, 1995, 42(7): 1 175-1 186.

[18]Willcox S, Meinig C, Sabine C L, et al. An autonomous mobile platform for underway surface carbon measurements in open-ocean and coastal waters[C]∥Proceedings of MTS/IEEE Oceans 2009 Conference. Biloxi, MS,2009.

[19]Leinweber A, Gruber N, Frenzel H, et al. Diurnal carbon cycling in the surface ocean and lower atmosphere of Santa Monica Bay, California[J]. Geophysical Research Letters, 2009, 36:L08601, doi: 10.1029/2008GL037018.

[20]Johnson K S. Simultaneous measurements of nitrate, oxygen, and carbon dioxide on oceanographic moorings: Observing the redfield ratio in real time[J]. Limnology and Oceanography, 2010, 55(2): 615-627.

[21]Nemoto K, Midorikawa T, Wada A, et al. Continuous observations of atmospheric and oceanic CO2 using a moored buoy in the East China Sea: Variations during the passage of typhoons[J]. Deep-Sea Research Ⅱ, 2009, 56(8/10): 542-553.

[22]Merlivat L, Brault P. CARIOCA buoy: Carbon dioxide monitor[J]. Sea Technology, 1995, 36(10): 23-30.

[23]Lefèvre N, Ciabrini J P, Michard G, et al. A new optical sensor for pCO2 measurements in seawater[J]. Marine Chemistry, 1993, 42(3/4): 189-198.

[24]Degrandpre M D, Hammar T R, Smith S P, et al. In situ measurements of seawater pCO2[J]. Limnology and Oceanography, 1995, 40(5): 969-975.

[25]Turk D, Mala I V, Degrandpre M D, et al. Carbon dioxide variability and air-sea fluxes in the northern Adriatic Sea[J]. Journal of Geophysical Research, 2010, 115: C10043, doi: 10.1029/2009JC006034.

[26]Kuss J, Roeder W, Wlost K P, et al. Time-series of surface water CO2 and oxygen measurements on a platform in the central Arkona Sea (Baltic Sea): Seasonality of uptake and release[J]. Marine Chemistry, 2006, 101(3/4): 220-232.

[27]Körtzinger A, Send U, Lampitt R S, et al. The seasonal pCO2 cycle at 49°N/16.5°W in the northeastern Atlantic Ocean and what it tells us about biological productivity[J]. Journal of Geophysical Research, 2008, 113: C04020, doi: 10.1029/2007JC004347.

[28]Körtzinger A, Send U, Wallace D W R, et al. Seasonal cycle of O2 and pCO2 in the central Labrador Sea: Atmospheric, biological, and physical implications[J]. Global Biogeochemical Cycles, 2008, 22: GB1014, doi: 10.1029/2007GB003029.

[29]Martz T R, Degrandpre M D, Strutton P G, et al. Sea surface pCO2 and carbon export during the Labrador Sea spring-summer bloom: An in situ mass balance approach[J]. Journal of Geophysical Research, 2009, 114: C09008, doi: 10.1029/2008JC005060.

[30]Degrandpre M D, Krtzinger A, Send U, et al. Uptake and sequestration of atmospheric CO2 in the Labrador Sea deep convection region[J]. Geophysical Research Letters, 2006, 33: L21S03, doi: 10.1029/2006GL026881.

[31]Evans W, Hales B, Strutton P G. Seasonal cycle of surface ocean pCO2 on the Oregon shelf[J]. Journal of Geophysical Research, 2011, 116: C05012, doi: 10.1029/2010JC006625.

[32]Merlivat L, Gonzalez Davila M, Caniaux G, et al. Mesoscale and diel to monthly variability of CO2 and carbon fluxes at the ocean surface in the northeastern Atlantic[J]. Journal of Geophysical Research, 2009, 114: C03010, doi: 10.1029/2007JC004657.

[33]Parard G, Lefèvre N, Boutin J. Sea water fugacity of CO2 at the PIRATA mooring at 6° S, 10° W[J]. Tellus B, 2010, 62:636-648.

[34]Lefèvre N, Guillot A, Beaumont L, et al. Variability of fCO2 in the Eastern Tropical Atlantic from a moored buoy[J]. Journal of Geophysical Research, 2008, 113: C01015, doi: 10.1029/2007JC004146.

[35]Bakker D C E, Etcheto J, Boutin J, et al. Variability of surface water fCO2 during seasonal upwelling in the equatorial Atlantic Ocean as observed by a drifting buoy[J]. Journal of Geophysical Research, 2001, 106: 9 241-9 253.

[36]Copin-Montégut C, Bégovic M, Merlivat L. Variability of the partial pressure of CO2 on diel to annual time scales in the Northwestern Mediterranean Sea[J]. Marine Chemistry, 2004, 85(3/4): 169-189.

[37]Shadwick E H, Thomas H, Azetsu-Scott K, et al. Seasonal variability of dissolved inorganic carbon and surface water pCO2 in the Scotian Shelf region of the Northwestern Atlantic[J]. Marine Chemistry, 2012, 124: 23-37.

[38]Xue L, Xue M, Zhang L, et al. Surface partial pressure of CO2 and air-sea exchange in the northern Yellow Sea[J]. Journal of Marine Systems, 2012,(105/108): 194-206.

[39]Zhang L, Xue M, Liu Q. Distribution and seasonal variation in the partial pressure of CO2 during autumn and winter in Jiaozhou Bay, a region of high urbanization[J]. Marine Pollution Bulletin, 2012, 64:56-65.

[40]Chierici M, Fransson A, Nojiri Y. Biogeochemical processes as drivers of surface fCO2 in contrasting provinces in the subarctic North Pacific Ocean[J]. Global Biogeochemical Cycles, 2006, 20: GB1009, doi: 10.1029/2004GB002356.

[41]Takahashi T, Olafsson J, Goddard J G, et al. Seasonal variation of CO2 and nutrients in the high-latitude surface oceans: A comparative  study[J]. Global Biogeochemical Cycles, 1993, 7(4): 843-878.

[42]Keeling C D, Whorf T P, Wahlen M, et al. Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980[J]. Nature, 1995, 375(6 533): 666-670.

[43]Bates N R. Interannual variability of oceanic CO2 and biogeochemical properties in the Western North Atlantic subtropical gyre[J]. Deep-Sea Research Ⅱ, 2001, 48(8/9): 1 507-1 528.

[44]Wakita M, Watanabe S, Watanabe Y W, et al. Temporal change of dissolved inorganic carbon in the subsurface water at station KNOT (44 °N, 155 °E) in the western North Pacific subpolar region[J]. Journal of Oceanography, 2005, 61(1): 129-139.

[45]Wong C S, Christian J R, Emmy Wong S K, et al. Carbon dioxide in surface seawater of the eastern North Pacific Ocean (line P), 1973-2005[J]. Deep-Sea Research Ⅰ, 2010, 57: 687-695.

[46]Wanninkhof R, Asher W E, Ho D T, et al. Advances on quantifying air-sea gas exchange and envirommental forcing[J]. Annual Review of Marine Science, 2009, 1: 213-244.

[1] 马晓旭,刘传联,金晓波,张洪瑞,马瑞罡. 长链烯酮在古大气二氧化碳分压重建的应用[J]. 地球科学进展, 2019, 34(3): 265-274.
[2] 念达, 邓琪敏, 付遵涛. 相对湿度及其变化的年循环研究进展[J]. 地球科学进展, 2018, 33(7): 762-774.
[3] 邵勰, 黄平, 黄荣辉. 南海夏季风爆发的研究进展[J]. 地球科学进展, 2014, 29(10): 1126-1137.
[4] 唐文魁,高全洲. 河口二氧化碳水—气交换研究进展[J]. 地球科学进展, 2013, 28(9): 1007-1014.
[5] 王展坤,Steven DiMarco,Stephanie Ingle, Leila Belabbassi. 北阿拉伯海的光纤海洋观测网络:成功、挑战和机遇[J]. 地球科学进展, 2013, 28(5): 529-536.
[6] 顾娟,李新,黄春林. 基于时序MODIS NDVI的黑河流域土地覆盖分类研究[J]. 地球科学进展, 2010, 25(3): 317-326.
[7] 柴琳娜,屈永华,张立新,梁顺林,王锦地. 基于自回归神经网络的时间序列叶面积指数估算[J]. 地球科学进展, 2009, 24(7): 756-768.
[8] 翟世奎,李怀明,于增慧,于新生. 现代海底热液活动调查研究技术进展[J]. 地球科学进展, 2007, 22(8): 769-776.
[9] 王浩;严登华;秦大庸;王建华. 近50年来黄河流域400 mm等雨量线空间变化研究[J]. 地球科学进展, 2005, 20(6): 649-655.
[10] 刘强;王跃思;王明星. 北京地区大气主要温室气体的季节变化[J]. 地球科学进展, 2004, 19(5): 817-823.
[11] 史久新,赵进平. 北冰洋盐跃层研究进展[J]. 地球科学进展, 2003, 18(3): 351-357.
[12] 洪时中. 非线性时间序列分析的最新进展及其在地球科学中的应用前景[J]. 地球科学进展, 1999, 14(6): 559-565.
[13] 郑卓. 第四纪孢粉分析的时间序列与空间模型[J]. 地球科学进展, 1998, 13(3): 300-305.
阅读次数
全文


摘要