地球科学进展 ›› 2005, Vol. 20 ›› Issue (6): 649 -655. doi: 10.11867/j.issn.1001-8166.2005.06.0649

研究论文 上一篇    下一篇

近50年来黄河流域400 mm等雨量线空间变化研究
王 浩,严登华,秦大庸,王建华   
  1. 中国水利水电科学研究院水资源研究所,北京 100044
  • 收稿日期:2004-05-24 修回日期:2004-12-29 出版日期:2005-06-25
  • 通讯作者: 王浩(1953-),男,北京人,教授,主要从事水文水资源研究.  E-mail:wanghao@iwhr.com
  • 基金资助:

    国家重点基础研究发展规划项目“黄河流域水资源演化规律与二元演化模型”(编号:G199043602)资助.

A STUDY OF THE SPATIAL SHIFT OF 400 mm RAINFALL CONTOURS IN THE YELLOW RIVER BASIN DURING RECENT 50 YEARS

WANG Hao; YAN Denghua; QIN Dayong; Wang Jianhua   

  1. Water Resources Department, China Institute of Water Resources and Hydropower Research, Beijing 100044,China
  • Received:2004-05-24 Revised:2004-12-29 Online:2005-06-25 Published:2005-06-25

以黄河流域及周边地区1 026个雨量(水文)站1956—2000年逐日降水过程资料为基础,以GIS技术为关键数据处理平台,建立等值线加权平均位置的定量化表征方法,采用时间序列分析技术,对黄河流域近50年来400 mm等雨量线的空间位移特征进行了系统揭示。1956—2000年间,黄河流域多年平均降雨量为454.62 mm;400 mm等雨量线加权平均位置坐标为(105°0′4″E,36°57′54″N)。整体上看,近50年来,黄河流域400 mm等雨量在纬向上的移动是典型的平稳随机序列过程;在经向上的移动尚不能满足平稳随机序列过程。趋势检验结果表明,黄河流域400 mm等雨量线有向东和向南发生移动的趋势,且向东移动的趋势显著。功率谱分析表明,黄河流域400 mm等雨量线在经向上发生迁移的显著周期为3年;在经向和纬向上均有7年和2年周期;同时,位移具有反向持久性。

Based on the daily serial rainfall data of 1026 rainfall gauges (or hydrological gauges) in the Yellow river basin and its surrounding regions during the period from 1956 to 2000, and on the key data disposal platform of GIS techniques, the spatial shift of 400mm-rainfall contours in the Yellow river basin in the past 50 years has been analyzed with the method of time serials analysis and the quantified weighted average location (QWAL) token method of contours has been founded in this paper. The multi-year yearly average rainfall in the Yellow river basin was 454.62mm and the QWAL of 400mm-rainfall contours was (105o0′4″E,36o57′54″N) from 1956 to 2000. In the whole, the latitudinal shift of 400 mm-rainfall contours in the Yellow River Basin in the recent 50 years has been a typical stationary random sequence, however the longitudinal shift serials cannot meet the requirement of the stationary random sequence. Trend test shows that spatial shift of the 400 mm rainfall contours in the Yellow river basin has the eastern and southern trends, while the eastern trend is notable. Power spectrum analysis indicates that the longitudinal shift of the 400 mm rainfall contours in the Yellow river basin has the notable cycle of 3 years, both longitudinal and latitudinal shifts have the 7-year and 2-year cycle. Hurst index shows that the displacement of QWALs of 400mm-rainfall contours has the reverse permanence features. 

中图分类号: 

[1] Hydrology Bureau of Water Resource and Electric Power Department. Assessment on Water Resource of China[M]. Beijing:Press of Water Resource and Electric Power,1987.[水利电力部水文局.中国水资源评价[M].北京: 水利电力出版社,1987.]
[2] Compiler Group of Physical Geography of China. Physical Geography of China(third edition) [M]. Beijing: Higher  Education Press, 1993.[《中国自然地理》编写组.中国自然地理(第三版) [M].北京:高等教育出版社,1993.]
[3] Fang Xiuqi, Jiang Haizhou,Lian Pengling. Range and rate of abrupt change of precipitation around 3500aBP in the north China farming grazing transitional zone[J]. Earth Science Frontiers, 2002,9(1):163-167.[方修琦,江海洲,连鹏灵.3500aBP我国北方农牧交错带降水突变的幅度与速率[J].地学前缘,2002,9(1):163-167.] 
[4] Zhou Lisan. The Theory and Practice of the Regionalization of Agriculture in China[M]. Hefei: Press of University of Science & Technology of China, 1993.[周立三.中国农业区划的理论与实践[M].合肥:中国科学技术大学出版社,1993.]
[5] Monte R O’Neal, Jane R Frankenberger, Daniel R Ess. Use of CERES-Maize to study efect of spatial precipitation variability on yield[J]. Agricultural Systems, 2002,73:205-225.
[6] Andrew C Comrie, Bill Broyles. Variability and spatial modeling of fine-scale precipitation data for the Sonoran Desert of south-west Arizona[J]. Journal of Arid Environments, 2002,(50): 573-592.
[7] Stephen B DeVogel, John W Magee, William F Manley, et al. A GIS-based reconstruction of late Quaternary paleohydrology: Lake Eyre, arid central Australia[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004,204:1-13.
[8] Li Guoying. Some momentous problem about Yellow River fathering[J]. Techniques on Water Resource and Hydro-power, 2000,31(4):9-12. [李国英.关于黄河治理的重大问题[J]. 水利水电技术,2000,31(4):9-12.]
[9] Wang Hao, Wang Chengming, Wang Jianhua, et al. Research on variation of hydrological cycle in the yellow river basin[J]. Advances in Water Science, 2003,14(suppl.):1-8.[王浩,王成明,王建华,等.黄河流域水文循环变化研究[J].水科学进展, 2003,14(增刊):1-8.]
[10] Huang Zhongshu. Spectrum Analysis and Its Application in Hydrometeorology[M]. Beijing: Meteorology Press,1983.[黄忠恕.波谱分析方法及其在水文气象学中的应用[M].北京:气象出版社,1983.] 
[11] Chen Zhaoguo.Time Series and Its Spectrum Analysis[M].Bejing: Science Press,1988.[陈兆国编著.时间序列及其谱分析[M].北京:科学出版社,1988.][12] George E P Box,Gwilym M Jenkins. Time Series Analysis Forecasting and Control(third edition) [M].Gu Lan,translated. Beijing:China Press of Statistic,1997.[George E P Box,Gwilym M Jenkins.时间序列分析预测与控制(第三版)[M].顾岚译.北京:中国统计出版社,1997.]
[13] Zhu Fukang, Lu Longhua. South Asia High[M].Beijing: Science Press, 1980.20-80.[朱福康,陆龙骅.南亚高亚[M].北京:科学出版社, 1980.20-80.]
[14] Miao Juan, Lin Zhenshan. Study on the characteristics of the precipitation of nine regions in China and their physical causes II—The relation between the precipitation and physical causes[J]. Journal of Tropical Meteorology, 2004,20(1):64-72.[苗娟,林振山. 我国九大气候区降水特性及其物理成因的研究(II)——我国各区降水与环流因子的关系[J].热带气象学报,2004,20(1):64-72.]

[1] 曾燕,邱新法,潘敖大,刘昌明. 地形对黄河流域太阳辐射影响的分析研究[J]. 地球科学进展, 2008, 23(11): 1185-1193.
[2] 刘昌明. “黄河流域水资源演化规律与可再生性维持机理”研究进展[J]. 地球科学进展, 2006, 21(10): 991-998.
阅读次数
全文


摘要