〔1〕Paciard N H,Grutchfield J P,Farmer J D,et al.Geometry from a time series〔J〕.Phys Rev Lett,1980,45(9):712~716. 〔2〕Takens F.Detecting strange attractors in turbulence〔J〕.Lecture Notes in Mathematics,1981,898:336. 〔3〕Grassberger P Procaccia. Measuring the strangeness of strange attractors〔J〕.Physica D,1983,9:189~208. 〔4〕Wolf A,Swift J B,Swinney H L,et al. Determing Lyapunov exponents from a time series〔J〕.Physica D,1985,16:285~317. 〔5〕Farmer J D, Sidorowich J J.Predicting chaotic time series〔J〕.Phys Rev Lett,1987,59(8):845~848. 〔6〕Casdagli M. Nonlinear prediction of chaotic time series〔J〕.Physica D,1989,35:335~356. 〔7〕Sauer T,Yorke J A, Casdagli M.Embedology〔J〕.Journal of Statistical Physics,1991,65(3~4):579~616. 〔8〕Weigend A S. Paradigm change in prediction〔A〕.In:Tong H,ed.Chaos and Forecasting〔C〕. Singapore: World Scientific,1995.145~160. 〔9〕Tong H. Nonlinear Time Series: A Dynamical System Approach〔M〕.Oxford:Oxford University Press,1990. 〔10〕Tong H.Some comments on a bridge between nonlinear dynamicits and statisticans〔J〕.Physica D,1992,58:299~303. 〔11〕Grassbeger P,Schreiber T, Schaffrath C.Nonlinear time sequence analysis〔J〕. International Journal of Bifurcation and Chaos,1991,1(3):521~547. 〔12〕Tong H.Dimension Estimation and Models (Nonlinear Time Series and Chaos Vol1)〔C〕. Singapore: World Scientific,1993. 〔13〕Tong H.Chaos and Forecasting (Nonlinear Time Series and Chaos Vol2)〔C〕.Singapore:World Scientific ,1995. 〔14〕Abarbanel H D I,Brown R,Sidorowich J J,et al.The Analysis of observed chaotic data in physical systems〔J〕.Rev Mod Phys,1993,65(4):1 331~1 392. 〔15〕Casdagli M,Tardins D D,Eubank S,et al.Nonlinear modeling of chaotic time series:theory and applications〔C〕.LA-UR-91-1637,1991. 〔16〕Hao Bailin.Elementary Symbolic Dynamics,and Chaos in Dissipative Systems〔M〕.Singapore:World Scientific,1989. 〔17〕Schroer C G,Sauer T,Ott E,et al.Predicting chaos most of the time from embeddings with self-intersections〔J〕.Phys Rev Lett,1998,80(7):1 410~1 413. 〔18〕Broomhead D S, King G P. Extracting qualitative dynamics from experimental data〔J〕.Physica D,1986,20:217~336. 〔19〕Kennel M B,Brown R, Abarbanel H D I.Determing embedding dimension for phase-space reconstruction using a geometrical construction〔J〕.Phys Rev A,1992,45(6):3 403~3411. 〔20〕Cao Liangyue.Practical method for determining the minimum embedding dimension of a scalar time series〔J〕.Physica D,1997,110:43~50. 〔21〕Sugihara G, May R M.Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series〔J〕.Nature,1990,344:734~741. 〔22〕Kaplan D T, Glass L.Direct test for determinism in a time series〔J〕.Phys Rev Lett,1992.68(4):427~430. 〔23〕Rosenstein M T,Collins J J, De Luca C J.Reconstruction expansion as a geometry-based framework for choosing proper delay times〔J〕.Physica D,1994,73:82~98. 〔24〕Fraser A M, Swinney H L. Independent coordinates for strange attractors from mutual information〔J〕.Phys Rev A,1986,33(2):1 134~1 140. 〔25〕Wayland R,Bromley D,Pickett D,et al.Recognizing determinism in a time series〔J〕.Phys Rev Lett,1993,70(5):580~582. 〔26〕Martinerie J M,Albano A M,Mees A I,et al.Mutual information,strange attractors,and the optimal estimation of dimension〔J〕.Phys Rev A,1992,45(10):7 058~7 064. 〔27〕Kugiumtzis D.State space reconstruction parameters in the analysis of chaotic time series—the role of the time window length〔J〕.Physica D,1996,95:13~28. 〔28〕Gibson J F,Farmer J D,Casdagli M,et al.An analytic approcah to practical state space reconstuction〔J〕,Physica D,1992,57:1~30. 〔29〕洪时中,赵永龙,袁坚.非线性时间序列分析中几个具体问题的初步研究——以太阳黑子序列为例〔A〕.中国地球物理学会年刊(1997)〔C〕.上海:同济大学出版社,1997. 〔30〕Lao Yingcheng, Lerner D.Effective scaling regime for computing the correlation dimension from chaotic time series〔J〕.Physica D,1998,115:1~18. 〔31〕郝柏林.分岔、混沌、奇怪吸引子、湍流及其它——关于确定论系统中的内在随机性〔J〕.物理学进展,1983,3(3):329~416. 〔32〕Theiler J,Eubank S,Longtin A,et al.Testing for nonlinearity in time series:the method of surrogate data〔J〕.Physica D,1992,58:77~94. 〔33〕Osborne A R, Rrovenzale A.Finite corrlation dimension for stochastic systems with power-1aw spectra〔J〕.Physica D,1989,35:357~381. 〔34〕Tanaka T,Aihara K, Taki M.Analysis of positive Lyapunov exponents from random time series〔J〕.Physica D,1998,111:42~50. 〔35〕袁坚,肖先赐.非线性时间序列的高阶奇异谱分析〔J〕.物理学报,1998,47(6):897~905. 〔36〕Schittenkopf C, Deco G. Testing nonlinear Markovian hypotheses in dynamical systems〔J〕.Physica D,1997,104:61~74. 〔37〕Weigend A S, Gershenfeld A.Time Series Prediction:Forecasting the Future and Understanding the Past〔A〕.Proceeding Santa Fe Institute Studies in the Sciences of Complexity (Vol XV)〔C〕.Reading:Addison-Welsley,1994.
|