1 |
Ziegler C L. Deep convection initiation: State of the science, limits of understanding, and future directions[C]// Preprints, 94th American Meteorological Society Annual Meeting. Atlanta, GA, American Meteorological Society, 2014.
|
2 |
Roberts R D, Rutledge S. Nowcasting storm initiation and growth using GOES-8 and WSR-88D data[J]. Weather and Forecasting, 2003, 18: 562-584.
|
3 |
Mecikalski J R, Bedka K M. Forecasting convective initiation by monitoring the evolution of moving cumulus in daytime GOES imagery[J]. Monthly Weather Review, 2006, 134: 49-78.
|
4 |
Roberts R D, Anderson A R, Nelson E, et al. Impacts of forecaster involvement on convective storm initiation and evolution nowcasting[J]. Weather and Forecasting, 2012, 27(5): 1 061-1 089.
|
5 |
Walker J R, MacKenzie Jr W M, Mecikalski J R, et al. An enhanced geostationary satellite-based convective initiation algorithm for 0-2-h nowcasting with object tracking[J]. Journal of Applied Meteorology and Climatology, 2012, 51: 1 931-1 949.
|
6 |
Mecikalski J R, Williams J, Jewett C, et al. Probabilistic 0-1-h convective initiation nowcasts that combine geostationary satellite observations and numerical weather prediction model data[J]. Journal of Applied Meteorology and Climatology, 2015, 54: 1 039-1 059.
|
7 |
Yu Xiaoding, Zhou Xiaogang, Wang Xiuming. The advances in the nowcasting techniques on thunderstorms and severe convection[J]. Acta Meteorologica Sinica, 2012, 70(3): 311-337.
|
|
俞小鼎, 周小刚, 王秀明.雷暴与强对流临近天气预报技术进展[J].气象学报, 2012, 70(3):311-337.
|
8 |
Kain J S, Coniglio M C, Correia J, et al. A feasibility study for probabilistic convection initiation forecasts based on explicit numerical guidance[J]. Bulletin of the American Meteorological Society, 2013, 94(8): 1 213-1 225.
|
9 |
Doswell III C A. The distinction between large scale and mesoscale contribution to severe convection: A case study example[J]. Weather and Forecasting, 1987, 2(1): 3-16.
|
10 |
Zhang Xiaoling, Chen Yun, Zhang Tao. Meso-scale convective weather analysis and severe convective weather forecasting[J]. Acta Meteorologica Sinica, 2012, 70(4): 642-654.
|
|
张小玲, 谌芸, 张涛.对流天气预报中的环境场条件分析[J].气象学报, 2012, 70(4): 642-654.
|
11 |
Zhu Yuejia, Xing Rui, Zhu Mingjia, et al. Application and verification of joint probability method in potential forecast for severe convective weather in Anhui Province[J]. Advances in Earth Science, 2019, 34(7):731-746.
|
|
朱月佳, 邢蕊, 朱明佳, 等. 联合概率方法在安徽强对流潜势预报中的应用和检验[J]. 地球科学进展, 2019, 34(7):731-746.
|
12 |
Ma Leiming, Bao Xuwei. Research progress on physical parameterization schemes in numerical weather prediction models[J]. Advances in Earth Science, 2017, 32(7):679-687.
|
|
马雷鸣, 鲍旭炜. 数值天气预报模式物理过程参数化方案的研究进展[J]. 地球科学进展, 2017, 32(7):679-687.
|
13 |
Huang Yipeng. Statistical Study on Precursor Signals of Convection Initiation in Satellite and Radar Observations[D]. Beijing: Peking University, 2018.
|
|
黄亦鹏. 卫星与雷达上对流触发前兆信号的统计特征[D].北京:北京大学, 2018.
|
14 |
Wakimoto R M, Murphey H V. Analysis of convergence boundaries observed during IHOP_2002[J]. Monthly Weather Review, 2010, 138: 2 737-2 760.
|
15 |
Hartung D C, Sieglaff J M, Cronce L M, et al. An intercomparison of UW cloud-top cooling rates with WSR-88D radar data[J]. Weather and Forecasting, 2013, 28: 463-480.
|
16 |
Haberlie A M, Ashley W S, Pingel T J. The effect of urbanisation on the climatology of thunderstorm initiation[J]. Quarterly Journal of the Royal Meteorological Society, 2015, 141(688): 663-675.
|
17 |
Wilson J W, Schreiber W E. Initiation of convective storms by radar-observed boundary layer convergent lines[J]. Monthly Weather Review, 1986, 114: 2 516-2 536.
|
18 |
Snively D V, Gallus W A. Prediction of convective morphology in near-cloud-permitting WRF model simulations[J]. Weather and Forecasting, 2014, 29: 130-149.
|
19 |
Dixon M, Wiener G. TITAN: Thunderstorm identification, tracking, analysis, and nowcasting—A radar-based methodology[J]. Journal of Atmospheric and Oceanic Technology, 1993, 10: 785-797.
|
20 |
Weckwerth T M, Wilson J W, Hagen M, et al. Radar climatology of the COPS region[J]. Quarterly Journal of the Royal Meteorological Society, 2011, 137(Suppl.1): 31-41.
|
21 |
Wulfmeyer V, Behrendt A, Kottmeier C, et al. The Convective and Orographically‐induced Precipitation Study (COPS): The scientific strategy, the field phase, and research highlights[J]. Quarterly Journal of the Royal Meteorological Society, 2011, 137(Suppl.1): 3-30.
|
22 |
Lock N A, Houston A L. Spatiotemporal distribution of thunderstorm initiation in the US Great Plains from 2005 to 2007[J]. International Journal of Climatology, 2015, 35(13): 4 047-4 056.
|
23 |
Fabry F, Meunier V, Treserras B P, et al. On the climatological use of radar data mosaics: Possibilities and challenges[J]. Bulletin of the American Meteorological Society, 2017, 98: 2 135-2 148.
|
24 |
Goudenhoofdt E, Delobbe L. Statistical characteristics of convective storms in Belgium derived from volumetric weather radar observations[J]. Journal of Applied Meteorology and Climatology, 2013, 52: 918-934.
|
25 |
Kaltenboeck R, Steinheimer M. Radar-based severe storm climatology for Austrian complex orography related to vertical wind shear and atmospheric instability[J]. Atmospheric Research, 2015, 158: 216-230.
|
26 |
Peter J R, Manton M J, Potts R J, et al. Radar-derived statistics of convective storms in Southeast Queensland[J]. Journal of Applied Meteorology and Climatology, 2015, 54(10): 1 985-2 008.
|
27 |
Han Lei, Yu Xiaoding, Zheng Yongguang, et al. Statistic characteristics of severe convective storm during warm-season in Beijing-Tianjin and its vicinity[J]. Chinese Science Bulletin, 2009, 54(11):1 585-1 590.
|
|
韩雷, 俞小鼎, 郑永光, 等.京津及邻近地区暖季强对流风暴的气候分布特征[J].科学通报, 2009, 54(11):1 585-1 590.
|
28 |
Chen M, Wang Y, Gao F, et al. Diurnal variations in convective storm activity over contiguous North China during the warm season based on radar mosaic climatology[J]. Journal of Geophysical Research: Atmospheres, 2012, 117(D20). DOI:10.1029/2012JD018158.
doi: 10.1029/2012JD018158
|
29 |
Wang Y, Wang H Q, Han L, et al. Statistical characteristics of unsteady storms in radar observations for the Beijing-Tianjin region[J]. Journal of Applied Meteorology and Climatology, 2015, 54(1): 106-116.
|
30 |
Chen X C, Zhao K, Xue M. Spatial and temporal characteristics of warm season convection over Pearl River Delta region, China, based on 3 years of operational radar data[J]. Journal of Geophysical Research: Atmospheres, 2014, 119: 12 447-12 465.
|
31 |
Chen X C, Zhao K, Xue M, et al. Radar-observed diurnal cycle and propagation of convection over the Pearl River Delta during Mei-Yu season[J]. Journal of Geophysical Research: Atmospheres, 2015, 120: 12 557-12 575.
|
32 |
Bai L, Chen G, Huang L. Image processing of radar mosaics for the climatology of convection initiation in South China[J]. Journal of Applied Meteorology and Climatology, 2019. DOI:10.1175/JAMC-D-19-0081.1.
doi: 10.1175/JAMC-D-19-0081.1
|
33 |
Meng Z, Yan D, Zhang Y. General features of squall lines in East China[J]. Monthly Weather Review, 2013, 141(5): 1 629-1 647.
|
34 |
Zheng L, Sun J, Zhang X, et al. Organizational modes of mesoscale convective systems over central East China[J]. Weather and Forecasting, 2013, 28(5): 1 081-1 098.
|
35 |
Weckwerth T M, Parsons D B. A review of convection initiation and motivation for IHOP_2002[J]. Monthly Weather Review, 2006, 134: 5-22.
|
36 |
Wilson J W, Weckwerth T M, Vivekanandan J, et al. Boundary layer clear-air radar echoes: Origin of echoes and accuracy of derived winds[J]. Journal of Atmospheric and Oceanic Technology, 1994, 11: 1 184-1 206.
|
37 |
Klingle D L, Smith D R, Wolfson M M. Gust front characteristics as detected by Doppler radar[J]. Monthly Weather Review, 1987, 115(5): 905-918.
|
38 |
Boyd J G. Observation of two intersecting radar fine lines[J]. Monthly Weather Review, 1965, 93: 188.
|
39 |
Koscielny A J, Doviak R J, Rabin R. Statistical considerations in the estimation of divergence from single-Doppler radar and application to prestorm boundary-layer observations[J]. Journal of Applied Meteorology, 1982, 21(2): 197-210.
|
40 |
Wilson J W, Mueller C K. Nowcasts of thunderstorm initiation and evolution[J]. Weather and Forecasting, 1993, 8: 113-131.
|
41 |
Bluestein H B, Parker S S. Modes of isolated, severe convective storm formation along the dryline[J]. Monthly Weather Review, 1993, 121(5): 1 354-1 372.
|
42 |
Fankhauser J C, Crook N A, Tuttle J, et al. Initiation of deep convection along boundary layer convergence lines in a semitropical environment[J]. Monthly Weather Review, 1995, 123: 291-314.
|
43 |
Wilson J W, Megenhardt D L. Thunderstorm initiation, organization, and lifetime associated with Florida boundary layer convergence lines[J]. Monthly Weather Review, 1997, 125: 1 507-1 525.
|
44 |
Koch S E, Ray C A. Mesoanalysis of summertime convergence zones in central and eastern North Carolina[J]. Weather and Forecasting, 1997, 12: 56-77.
|
45 |
Sills D M L, Brook J R, Levy I, et al. Lake breezes in the southern Great Lakes region and their influence during BAQS-Met 2007[J]. Atmospheric Chemistry and Physics, 2011, 11: 7 955-7 973.
|
46 |
Alexander L S, Sills D M, Taylor P A. Initiation of convective storms at low-level mesoscale boundaries in southwestern Ontario[J]. Weather and Forecasting, 2018, 33: 583-598.
|
47 |
Huang Y, Meng Z, Li W, et al. General features of radar-observed boundary layer convergence lines and their associated convection over a sharp vegetation-contrast area[J]. Geophysical Research Letters, 2019, 46: 2 865-2 873.
|
48 |
Purdom J F W. Some uses of high resolution GOES imagery in the mesoscale forecasting of convection and its behavior[J]. Monthly Weather Review, 1976, 104: 1 474-1 483.
|
49 |
Purdom J F W. Subjective interpretations of geostationary satellite data for nowcasting[M]// Browning K. Nowcasting. London: Academic Press, 1982: 149-166.
|
50 |
Purdom J F W, Marcus K. Thunderstorm trigger mechanisms over the southeast United States[C]// Preprints, 12th Conference. on Severe Local Storms. San Antonio, TX, American Meteorological Society, 1982: 487-488.
|
51 |
Weckwerth T M, Murphey H V, Flamant C. et al. An observational study of convection initiation on 12 June 2002 during IHOP_2002[J]. Monthly Weather Review, 2008, 136: 2 283-2 304.
|
52 |
Su T, Zhai G. The role of convectively generated gravity waves on convective initiation: A case study[J]. Monthly Weather Review, 2017, 145: 335-359.
|
53 |
Bai L, Meng Z, Huang Y, et al. Convection initiation resulting from the interaction between a quasi-stationary dryline and intersecting gust fronts: A case study[J]. Journal of Geophysical Research: Atmospheres, 2019, 124: 2 379-2 396.
|
54 |
Bessho K, Date K, Hayashi M, et al. An introduction to Himawari-8/9—Japan’s new-generation geostationary meteorological satellites[J]. Journal of the Meteorological Society of Japan, 2016, 94: 151-183.
|
55 |
Banta R M, Barker S C. Thunderstorm genesis zones in the Colorado Rocky Mountains as determined by traceback of geosynchronous satellite images[J]. Monthly Weather Review, 1987, 115(2): 463-476.
|
56 |
Barker S C, Wurman J, Banta R M. Thunderstorm producing terrain features[J]. Bulletin of the American Meteorological Society, 1988, 69(3): 272-277.
|
57 |
Lima M A, Wilson J W. Convective storm initiation in a moist tropical environment[J]. Monthly Weather Review, 2008, 136(6): 1 847-1 864.
|
58 |
Weckwerth T M, Bennett L J, Jay M L, et al. An observational and modeling study of the processes leading to deep, moist convection in complex terrain[J]. Monthly Weather Review, 2014, 142(8): 2 687-2 708.
|
59 |
Zhang M, Meng Z, Huang Y, et al. The mechanism and predictability of an elevated convection initiation event in a weak-lifting environment in central-eastern China[J]. Monthly Weather Review, 2019, 147: 1 823-1 841.
|
60 |
Sieglaff J M, Cronce L M, Feltz W F, et al. Nowcasting convective storm initiation using satellite-based box-averaged cloud-top cooling and cloud-type trends[J]. Journal of Applied Meteorology and Climatology, 2011, 50: 110-126.
|
61 |
Huang Y, Meng Z, Li J, et al. Distribution and variability of satellite-derived signals of isolated convection initiation events over central eastern China[J]. Journal of Geophysical Research: Atmospheres, 2017, 122(11): 11 357-11 373.
|
62 |
Senf F, Dietzsch F, Hünerbein A, et al. Characterization of initiation and growth of selected severe convective storms over central Europe with MSG-SEVIRI[J]. Journal of Applied Meteorology and Climatology, 2015, 54(1): 207-224.
|
63 |
Mecikalski J R, MacKenzie Jr W M, Koenig M, et al. Cloud-top properties of growing cumulus prior to convective initiation as measured by Meteosat Second Generation. Part I: Infrared fields[J]. Journal of Applied Meteorology and Climatology, 2010, 49(3): 521-534.
|
64 |
Mecikalski J R, Bedka K M, Paech S J, et al. A statistical evaluation of GOES cloud-top properties for nowcasting convective initiation[J]. Monthly Weather Review, 2008, 136: 4 899-4 914.
|
65 |
Siewert C W, Koenig M, Mecikalski J R. Application of Meteosat Second Generation data towards improving the nowcasting of convective initiation[J]. Meteorological Applications, 2010, 17: 442-451.
|
66 |
Gambill L D, Mecikalski J R. A satellite-based summer convective cloud frequency analysis over the southeastern United States[J]. Journal of Applied Meteorology and Climatology, 2011, 50(8): 1 756-1 769.
|
67 |
Harris R J, Mecikalski J R, MacKenzie W M, et al. The definition of GOES infrared lightning initiation interest fields[J]. Journal of Applied Meteorology and Climatology, 2010, 49(12): 2 527-2 543.
|
68 |
Mecikalski J R, Li X, Carey L D, et al. Regional comparison of GOES cloud-top properties and radar characteristics in advance of first-flash lightning initiation[J]. Monthly Weather Review, 2013, 141(1): 55-74.
|
69 |
Lensky I M, Rosenfeld D. The time-space exchangeability of satellite retrieved relations between cloud top temperature and particle effective radius[J]. Atmospheric Chemistry and Physics, 2006, 6: 2 887-2 894.
|
70 |
Rosenfeld D, Woodley W L, Lerner A, et al. Satellite detection of severe convective storms by their retrieved vertical profiles of cloud particle effective radius and thermodynamic phase[J]. Journal of Geophysical Research, 2008, 113(D4). DOI:10.1029/2007JD008600.
doi: 10.1029/2007JD008600
|
71 |
Mecikalski J R, Watts P, Koenig M. Use of meteosat seceond generation optimal cloud analysis fields for understanding physical attributes of growing cumulus clouds[J]. Atmospheric Research, 2011, 102: 175-190.
|
72 |
Mecikalski J R, MacKenzie Jr W M, Koenig M, et al. Cloud-top properties of growing cumulus prior to convective initiation as measured by Meteosat Second Generation. Part II: Use of visible reflectance[J]. Journal of Applied Meteorology and Climatology, 2010, 49: 2 544-2 558.
|
73 |
Cintineo J L, Pavolonis M J, Sieglaff J M, et al. Evolution of severe and nonsevere convection inferred from GOES-derived cloud properties[J]. Journal of Applied Meteorology and Climatology, 2013, 52: 2 009-2 023.
|
74 |
Cintineo J L, Pavolonis M J, Sieglaff J M, et al. An empirical model for assessing the severe weather potential of developing convection[J]. Weather and Forecasting, 2014, 29: 639-653.
|
75 |
Matthee R, Mecikalski J R. Geostationary infrared methods for detecting lightning-producing cumulonimbus clouds[J]. Journal of Geophysical Research: Atmospheres, 2013, 118: 6 580-6 592.
|
76 |
Mecikalski J R, Rosenfeld D, Manzato A. Evaluation of geostationary satellite observations and the development of a 1-2 h prediction model for future storm intensity[J]. Journal of Geophysical Research: Atmospheres, 2016, 121: 6 374-6 392.
|
77 |
Menzel W P, Holt F C, Schmit T J, et al. Application of GOES-8/9 soundings to weather forecasting and nowcasting[J]. Bulletin of the American Meteorological Society, 1998, 79: 2 059-2 077.
|
78 |
Li Z, Li J, Menzel W P, et al. GOES sounding improvement and applications to severe storm nowcasting[J]. Geophysical Research Letters, 2008, 35(3). DOI:10.1029/2007GL032797.
doi: 10.1029/2007GL032797
|
79 |
Schmit T J, Li J, Ackerman S A, et al. High-spectral- and high-temporal-resolution infrared measurements from geostationary orbit[J]. Journal of Atmospheric and Oceanic Technology, 2009, 26: 2 273-2 292.
|
80 |
Schmit T J, Feltz W F, Menzel W P, et al. Validation and use of GOES sounder moisture information[J]. Weather and Forecasting, 2002, 17: 139-154.
|
81 |
Committee on Earth Science and Applications from Space. Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond[M]. Washington DC: National Academies Press, 2007.
|
82 |
Li J, Liu C Y, Zhang P, et al. Applications of full spatial resolution space-based advanced infrared soundings in the preconvection environment[J]. Weather and Forecasting, 2012, 27: 515-524.
|
83 |
Sieglaff J M, Schmit T J, Menzel W P, et al. Inferring convective weather characteristics with geostationary high spectral resolution IR window measurements: A look into the future[J]. Journal of Atmospheric and Oceanic Technology, 2009, 26: 1 527-1 541.
|
84 |
Li J, Li J, Schmit T J, et al. Warning information in preconvection environment from geostationary advanced infrared sounding system—A simulation study using the IHOP case[J]. Journal of Applied Meteorology and Climatology, 2011, 50: 766-783.
|
85 |
Yang J, Zhang Z, Wei C, et al. Introducing the new generation of Chinese geostationary weather satellites, Fengyun-4[J]. Bulletin of the American Meteorological Society, 2017, 98(8): 1 637-1 658.
|
86 |
Menzel W P, Schmit T J, Zhang P, et al. Satellite-based atmospheric infrared sounder development and applications[J]. Bulletin of the American Meteorological Society, 2018, 99: 583-603.
|
87 |
Mueller C, Saxen T, Roberts R, et al. NCAR auto-nowcast system[J]. Weather and Forecasting, 2003, 18: 545-561.
|
88 |
Bedka K M, Mecikalski J R. Application of satellitederived atmospheric vectors for estimating mesoscale flows[J]. Journal of Applied Meteorology, 2005, 44: 1 761-1 772.
|
89 |
Zinner T, Mannstein H, Tafferner A. Cb-TRAM: Tracking and monitoring severe convection from onset over rapid development to mature phase using multi-channel Meteosat-8 SEVIRI data[J]. Meteorology and Atmospheric Physics, 2008, 101(3/4): 191-210.
|
90 |
Jewett C P, Mecikalski J R. Adjusting thresholds of satellite-based convective initiation interest fields based on the cloud environment[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(22): 12 649-12 660.
|
91 |
Mecikalski J R, Minnis P, Palikonda R. Use of satellite derived cloud properties to quantify growing cumulus beneath cirrus clouds[J]. Atmospheric Research, 2013, 120/121: 192-201.
|
92 |
Merk D, Zinner T. Detection of convective initiation using Meteosat SEVIRI: Implementation in and verification with the tracking and nowcasting algorithm Cb-TRAM[J]. Atmospheric Measurement Techniques, 2013, 6(8): 1 903.
|
93 |
Song Zhenni. Grid-based early warning of convection initiation with FY2C satellite[J]. Science & Technology Information, 2014, (5):76-77.
|
|
宋珍妮.基于网格的FY2C卫星对流初生预警[J].科技信息, 2014, (5):76-77.
|
94 |
Liu Jinghua, Wang Bin, Han Lei, et al. Forecasting convective initiation of a convective weather event in Beijing-Tianjin region[J]. Acta Scientiarum Naturalium Universitatis Pekinensi, 2012, 48(1):42-46.
|
|
刘京华, 王彬, 韩雷, 等.京津地区一次强对流天气的初生预警技术研究[J].北京大学学报:自然科学版, 2012, 48(1):42-46.
|
95 |
Sobajima A. Rapidly Development Cumulus Areas Derivation Algorithm[R]. Japan Meteorological Agency Algorithm Theoretical Basis Document, Meteorological Satellite Center, Tokyo, Japan, 2012.
|
96 |
Li Wusheng, Wang Hongqing, Wang Yu, et al. Convective initiation forecasting and statistical evaluation based on satellite data[J]. Acta Scientiarum Naturalium Universitatis Pekinensi, 2014, 50(5):819-824.
|
|
李五生, 王洪庆, 王玉, 等.基于卫星资料的对流初生预报及效果评估[J].北京大学学报:自然科学版, 2014, 50(5):819-824.
|
97 |
Han H, Lee S, Im J, et al. Detection of convective initiation using meteorological imager onboard communication, ocean, and meteorological satellite based on machine learning approaches[J]. Remote Sensing, 2015, 7: 9 184-9 204.
|
98 |
Guo Wei, Cui Linli, Gu Wen, et al. Summer convective initiation forecasting in Shanghai based on Himawari-8 satellite[J]. Meteorological Monthly, 2018, 44(9):1 229-1 236.
|
|
郭巍, 崔林丽, 顾问, 等.基于葵花8卫星的上海市夏季对流初生预报研究[J].气象, 2018, 44(9):1 229-1 236.
|
99 |
Zhuge X, Zou X. Summertime convective initiation nowcasting over southeastern China based on Advanced Himawari Imager observations[J]. Journal of the Meteorological Society of Japan, 2018, 96(4): 337-353.
|
100 |
Lee S, Han H, Im J, et al. Detection of deterministic and probabilistic convection initiation using Himawari-8 advanced Himawari Imager data[J]. Atmospheric Measurement Techniques, 2017, 10(5): 1 859.
|
101 |
Han D, Lee J, Im J, et al. A novel framework of detecting convective initiation combining automated sampling, machine learning, and repeated model tuning from geostationary satellite data[J]. Remote Sensing, 2019, 11(12): 1 454.
|
102 |
Pavolonis M J, Heidinger A K. Daytime cloud overlap detection from AVHRR and VIIRS[J]. Journal of Applied Meteorology, 2004, 43: 762-778.
|
103 |
Pavolonis M J, Heidinger A K, Uttal T. Daytime global cloud typing from AVHRR and VIIRS: Algorithm description, validation, and comparisons[J]. Journal of Atmospheric and Oceanic Technology, 2005, 44: 804-826.
|
104 |
Pavolonis M J. Advances in extracting cloud composition information from spaceborne infrared radiances: A robust alternative to brightness temperatures. Part I: Theory[J]. Journal of Applied Meteorology and Climatology, 2010, 49: 1 992-2 012.
|
105 |
Xu Hui. Nowcasting convective storm initiation using the data of FY2C box-averaging method[J]. Electronic Design Engineering, 2012, 20(21):40-42.
|
|
徐慧.基于 FY2C 数据的平均 box 方法预报对流初生[J].电子设计工程, 2012, 20(21):40-42.
|
106 |
Zhang Yunqi, Zhang Fuqing. A review on the ensemble-based data assimilations for severe convective storms[J]. Advances in Meteorological Science and Technology, 2018, 8(3):38-52.
|
|
张云济, 张福青. 集合资料同化方法在强雷暴天气预报中的应用[J]. 气象科技进展, 2018, 8(3):38-52.
|