地球科学进展 ›› 2001, Vol. 16 ›› Issue (4): 508 -513. doi: 10.11867/j.issn.1001-8166.2001.04.0508

综述与评述 上一篇    下一篇

变质流体作用的元素地球化学研究
唐红峰,刘丛强   
  1. 中国科学院地球化学研究所,贵州 贵阳 550002
  • 收稿日期:2000-01-08 修回日期:2001-01-08 出版日期:2001-08-01
  • 通讯作者: 唐红峰(1963-),男,湖南攸县人,博士,主要从事岩石学和地球化学究. E-mail:hftang@263.net
  • 基金资助:

    国家杰出青年科学基金项目“流体—岩石反应体系中稀土元素(和钇)的地球化学”(编号:49625304);国家攀登计划项目“地质流体作用及其成矿效应研究”(编号:95-预-39)资助.

ELEMENTARY GEOCHEMICAL STUDY ON THE ROLES OF FLUIDS DURING METAMORPHISM

TANG Hongfeng, LIU Congqiang   

  1. Institute of Geochemistry, Chinese Academy of Sciences, Guiyang  550002, China
  • Received:2000-01-08 Revised:2001-01-08 Online:2001-08-01 Published:2001-08-01

变质流体作用是变质岩—流体体系的重要地质作用过程,可以通过有效的地质地球化学方法揭示。综述了变质流体作用的地球化学研究进展,主要包括:流体包裹体、同位素和元素地球化学等方面,强调了元素地球化学研究对于示踪变质流体作用过程的重要性。

The role of metamorphic fluids is an important process in the metamorphic rock-fluid system. This process can be revealed effectively by a series of geological and geochemical approaches. Advances in geochemical studies on the role of fluids during metamorphism are summarized in this paper, including aspects of fluid inclusions, isotopes, and elements. It is particularly emphasized that elementary geochemical study is of importance in tracing the process.

中图分类号: 

[1] Touret J. The granulite facies in Southern Norway. II: The fluid inclusions[J]. Lithos, 1971, 4: 423-436. 
[2] Xu Xuechun. Advances in the study of metamorphic fluids[J]. Earth Science Frontiers, 1996, 3(3~4): 200-208.[徐学纯. 变质流体研究新进展
[J]. 地学前缘, 1996, 3(3~4): 200-208.]
[3] Smith M P, Yardley B W D. Fluid evolution during metamorphism of the Otago Schist, New Zealand: (I) Evidence from fluid inclusions[J]. J Metamorphic Geol, 1999, 17: 173-186.
[4] Xu Xuechun. Implications and procedures for the study of metamorphic fluids[J]. Overseas Precambrian Geology, 1991, (3): 64-77.
[徐学纯. 变质流体研究的意义和途径[J]. 国外前寒武纪地质, 1991, (3): 64-77.]
[5]Lu Huanzhang, Li Yuansheng. Ore-forming fluids[A]. In: Laboratory of Ore Deposit Geochemistry, Chinese Academy of Sciences,ed. Ore Deposit Geochemistry[C]. Beijing: Geological Publishing House, 1997. 109-134.[卢焕章, 李院生. 成矿流体[A]. 见:中国科学院矿床地球化学开放研究实验室.矿床地球化学[C]. 北京: 地质出版社, 1997. 109-134.]
 [6] Zhao Guochun, Liu Shuwen, Sun Deyou. Case studies and their implications for buffering of metamorphic fluids[J]. Journal of Changchun University Earth Sciences, 1996, 26(1): 31-36.[赵国春, 刘树文, 孙德有. 变质流体对变质反应温度缓冲作用实例研究及意义[J]. 长春地质学院学报, 1996, 26(1): 31-36.]
 [7] Liu Shuwen. Fluid evolution during high-grade metamorphism in East Hebei[J]. Acta Petrologica Sinica, 1996, 12(1): 48-58.[刘树文. 冀东高级变质作用中流体演化[J]. 岩石学报, 1996, 12(1): 48-58.]
 [8]  Xu Xuechun. The behavior and evolution of granulite facies metamorphic fluids in the Wulashan area, Inner Mongolia[J]. Geological Review, 1992, 38(5): 398-406.[徐学纯. 内蒙古乌拉山地区麻粒岩相变质流体性状及其演化[J]. 地质论评, 1992, 38(5): 398-406.]
 [9]  Yardley B W D. Fluid migration and veining in the Connemara Schists, Ireland[A].In: Walther J V, Wood B J, eds. Fluid-Rock Interactions During Metamorphism[C]. New York: Springer-Verlag, 1986. 109-131.
[10]  Yardley B W D, Bottrell S H. Silica mobility and fluid movement during metamorphism of the Connemara schists, Ireland[J]. J Metamorphic Geol, 1992, 10: 453-464.
[11]  Ferry J M. Mineral reactions and element migration during metamorphism of calcareous sediments from the Vassalboro Formation, south-central Maine[J]. Am Mineral, 1983, 68, 334-354.
[12]  Roedder E. Fluid inclusions[J]. Rev Mineral, 1984, 12: 337-380.
[13]  Fan Hongrui, Xie Yihan, Wang Yinglan. Characteristics and evolution of metamorphic fluid in Xiongershan area, Western Henan Province[J]. Acta Mineralogica Sinica, 1992, 12(4): 299-308.[范宏瑞, 谢奕汉, 王英兰. 豫西熊耳山地区变质流体的性质与演化[J]. 矿物学报, 1992, 12(4): 299-308.]
[14]  Fan Hongrui, Xie Yihan, Zhao Rui, et al. Dual origins of Xiaoqinling gold-bearing quartz veins: Fluid inclusion evidence[J]. Chinese Science Bulletin, 2000, 45(15): 1 424-1 430.
[15]  Svensen H, Jamtveit B, Yardley B, et al. Eclogite facies fluids from the Caledonides of western Norway: compositions and implications for fluid-rock interactions[J]. Mineral Mag, 1998, 62A: 1 481-1 482.
[16]  Xiao Y L, Hoefs J, van den Kerkhof A M, et al. Fluid inclusions in ultra high-pressure eclogites from the Dabie Shan, eastern China[J]. Mineral Mag, 1998, 62A: 1667-1668.
[17]  Philippot P, Selverstone J. Trace-element-rich brines in eclogitic veins: Implications for fluid composition and transport during subduction[J]. Contrib Mineral Petrol, 1991, 106: 417-430.
[18]  Andersen T, Austrheim H, Burke E A J. Fluid inclusions in granulites and eclogites from the Bergen Arcs, Caledonides of W. Norway[J]. Mineral Mag, 1990, 54: 145-158.
[19]  Larsen R B, Eide E A, Burke E A J. Evolution of metamorphic volatiles during exhumation of microdiamond-bearing granulites in the Western Gneiss Region, Norway[J]. Contrib Mineral Petrol, 1998, 133: 106-121.
[20]  Xu Qidong. Fluid inclusion study in metamorphic rocks: Several key points[J]. Earth Science Frontiers, 1996, 3(3-4): 216-221.[徐启东. 变质岩流体包裹体研究的几个基本问题综述[J]. 地学前缘, 1996, 3(3-4): 216-221.]
[21]  Bebout G E, Barton M. Fluid flow and metamorphism in a subduction zone hydrothermal system: Catalina Schist terrane, California[J]. Geology,1989, 17, 976-980.
[22]  Bebout G E. Field-based evidence for devolatilization in subduction zones: Implications for arc magmatism[J]. Science, 1991, 251: 413-416.
[23]  Kohn M J, Valley J W. Oxygen isotope constraints on metamorphic fluid flow, Townshend Dam, Vermont, USA[J]. Geochim Cosmochim Acta, 1994, 58: 5 551-5 566.
[24]  van Haren J L M, Auge J J, Rye D M. Oxygen isotope record of fluid infiltration and mass transfer during regional metamorphism of pelitic schist, Connecticut, USA[J]. Geochim Cosmochim Acta, 1996, 60: 3 487-3 504.
[25]  Chamberlain C P, Conrad M E. Oxygen isotope zoning in garnet: A record of volatile transport[J]. Geochim Cosmochim Acta, 1993, 57: 2 613-2 629.
[26]  Kohn M J, Valley J W, Elsenheimer D, et al.Oxygen isotope zoning in garnet and staurolite: Evidence for closed system mineral growth during regional metamorphism[J]. Am Mineral, 1993, 78: 988-1 001.
[27]  Hoefs J, Touret J. Fluid inclusion and carbon isotope study from Bamble granulites (South Norway): A preliminary investigation[J]. Contrib Mineral Petrol, 1975, 52: 165-174.
[28]  Jackson D H, Mattey D P, Harris N B W. Carbon isotope compositions of fluid inclusions in  charnockites from southern India[J]. Nature, 1988, 333: 167-170.
[29]  Holness M B. Fluid flow paths and mechanisms of fluid infiltration in carbonates during contact metamorphism: the Beinnan Dubhaich aureole, Skye[J]. J Metamorphic Geol, 1997, 15: 59-70.
[30]  Ague J J. Mass transfer during Barrovian metamorphism of pelites, south-central Connecticut. II: Channelized fluid flow and the growth of staurolite and kyanite[J]. Am J Sci, 1994, 294: 1 061-1 134.
[31]  Bowman J R, Willett S D, Cook S J. Oxygen isotopic transport and exchange during fluid flow: one-dimensional models and applications
[J]. Am J Sci, 1994, 294: 1-55.
[32]  Ferry J M, Gerdes M L. Chemically reactive fluid flow during metamorphism[J]. Annu Rev Earth Planet Sci, 1998, 26: 255-287.
[33]  Thompson A B, Connolly J A D. Migration of metamorphic fluid: some aspects of mass and heat transfer[J]. Earth-Science Rev, 1992, 32: 107-121.
[34]  Cartwright I, Weaver T R. Two-dimensional patterns of metamorphic fluid flow and isotopic resetting in layered and fractured rocks[J]. J Metamorphic Geol, 1997, 15: 497-512.
[35]  Skelton A D L, Graham C M, Bickle M J. Lithological and structural controls on regional 3-D fluid flow patterns during greenschist facies metamorphism of the Dalradian of the SW Scottish Highlands[J]. J Petrol, 1995, 36: 563-585.
[36]  Zheng Yongfei, Fu Bin, Wei Chunsheng. Geochemistry of metamorphic fluids: from static-qualitative analysis to dynamic-quantitative study[J]. Acta Petrologica Sinica, 1999, 15(4): 564-575.[郑永飞, 傅斌, 魏春生. 变质流体地球化学:从静态定性“流”向动态定量[J]. 岩石学报, 1999, 15(4): 564-575.]
[37]  Willianms I S, Buick I S, Cartwright I. An extended episode of early Mesoproterozoic metamorphic fluid flow in the Reynolds Range, central Australia
[J]. J Metamorphic Geol, 1996, 14: 29-47.
[38]  Kelley S, Turner G, Butterfield A W, et al. The source and significance of argon isotopes in fluid inclusions from areas of mineralization[J]. Earth Planet Sci Lett, 1986, 79: 303-318.
[39]  Qiu Huaning, Dai Tongmo. 40Ar/39Ar technique for dating the fluid inclusions of quartz from a hydrothermal deposit[J]. Chinese Science Bulletin,1989, 34(22): 1 887-1 890.
[40]  Ague J J. Evidence for major mass transfer and volume strain during regional metamorphism of pelites[J]. Geology, 1991, 19: 855-858.
[41]  Tang Hongfeng, Liu Congqiang, Xie Guogang. Mass transfer and element mobility of rocks during regional metamorphism-A case study of metamorphosed pelites from the Shuangqiaoshan Group in Lushan[J]. Geological Review, 2000, 46(3): 245-254.[唐红峰, 刘丛强, 谢国刚. 区域变质作用中岩石的质量迁移和元素活动—以庐山双桥山群变泥质岩系为例[J]. 地质论评, 2000, 46(3): 245-254.]
[42]  Hellman P L, Smith R E, Henderson P. The mobility of the rare earth elements: Evidence and implications from selected terrains affected by burial metamorphism[J]. Contrib Mineral Petrol, 1979, 71: 23-44.
[43]  Grauch R I. Rare earth elements in metamorphic rocks[J]. Rev Mineral, 1989, 21: 147-167.
[44]  Tang Hongfeng, Liu Congqiang. Fluid migration and REE mobility during regional metamorphism: Evidence from trace element geochemistry of metamorphic veins within Xingzi Group of Lushan, SE China[J]. Geochimica, 2000, 29(5):447-454.[唐红峰, 刘丛强. 变质过程中的流体运移和稀土元素活动-庐山星子群变质脉体的微量元素地球化学[J]. 地球化学, 2000, 29(5):447-454.]
[45]  Wyllie P J. Subduction products according to experimental prediction[J]. Bull Geol Soc Am, 1982, 93: 468-476.
[46]  Moran A E, Sisson V B, Leeman W P. Boron depletion during progressive metamorphism: Implications for subduction processes[J]. Earth Planet Sci Lett, 1992, 111: 331-349.
[47]  Bebout G E, Ryan J G, Leeman W P, et al.Fractionation of trace elements by subduction-zone metamorphism-effect of convergent-margin thermal evolution[J]. Earth Planet Sci Lett, 1999, 171: 63-81.
[48]  Becker H, Jochum K P, Carlson R W. Constraints from high-pressure veins in eclogites on the composition of hydrous fluids in subduction zones
[J]. Chem Geol, 1999, 160: 291-308.
[49]  Becker H, Jochum K P, Carlson R W. Trace element fractionation during dehydration of eclogites from high-pressure terranes and the implications for element fluxes in subduction zones[J]. Chem Geol, 2000, 163: 65-99.
[50]  Kogiso T, Tatsumi Y, Nakano S. Trace element transport during dehydration processes in the subducted oceanic crust: 1. Experiments and implications for the origin of ocean island basalts[J]. Earth Planet Sci Lett, 1997, 148: 193-205.
[51]  Shatsky V S, Kozmenko O A, Sobolev N V. Behaviour of rare-earth elements during high-pressure metamorphism[J]. Lithos, 1990, 25: 219-226.
[52]  Bea F, Montero P. Behavior of accessory phase and redistribution of Zr, REE, Y, Th, and U during metamorphism and partial melting of metapelites in the lower crust: An example from the Kinzigite Formation of Ivrea-Verbano, NW Italy[J]. Geochim Cosmochim Acta, 1999, 63: 1 133-1 153.
[53]  Tribuzio R, Riccardi M P, and Ottolini L. Trace element redistribution in high-temperature deformed gabbros from East Ligurian ophiolites (Northern Apennines, Italy) :constraints on the origin of syndeformation fluids[J]. J Metamorphic Geol, 1995, 13: 367-377.
[54]  Bau M. Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect[J]. Contrib Mineral Petrol, 1996, 123: 323-333.
[55]  Bau M, Dulski P. Comparative study of yttrium and rare-earth element behaviours in fluorine-rich hydrothermal fluids[J]. Contrib Mineral Petrol, 1995, 119: 213-223.
[56]  Irber W, Förster H-J, Hecht L, et al.Experimental, geochemical, mineralogical and O-isotope constraints of the Fichtegebirge granites (Germany)
[J]. Geol Rundschau, 1997, 86:S110-124.
[57]  Liu C-Q, Tang H-F. Redistribution of rare-earth elements (REE) during metamorphism and its indicative significance for fluid processes: a study on the trace element composition of the Xingzi Group metamorphic rocks in the Lushan area, SE China[J]. Science in China (Series D), 1999, 42: 646-654.
[58]  Audetat A, Gunther D, Heinrich A. Formation of a magmatic-hydrothermal ore deposit: Insights with LA-ICP-MS analysis of fluid inclusions
[J]. Science, 1998, 279: 2091-2094.

[1] 田野,田云涛. 石墨化碳质物质拉曼光谱温度计原理与应用[J]. 地球科学进展, 2020, 35(3): 259-274.
[2] 康健,陈列锰,宋谢炎,戴智慧,郑文勤. 金川超大型 Ni-Cu-( PGE)矿床橄榄石微量元素特征及地质意义[J]. 地球科学进展, 2019, 34(4): 382-398.
[3] 林祖苇,赵新福,熊乐,朱照先. 胶东三山岛金矿床黄铁矿原位微区微量元素特征及对矿床成因的指示[J]. 地球科学进展, 2019, 34(4): 399-413.
[4] 黄柯, 朱明田, 张连昌, 李文君, 高炳宇. 磁铁矿LA-ICP-MS分析在矿床成因研究中的应用[J]. 地球科学进展, 2017, 32(3): 262-275.
[5] 黄从俊, 李泽琴. 拉拉IOCG矿床萤石的微量元素地球化学特征及其指示意义[J]. 地球科学进展, 2015, 30(9): 1063-1073.
[6] 刘超, 谢庆宾, 王贵文, 崔宇, 张楚珺. 岩浆侵入作用影响碎屑围岩储层的研究进展与展望[J]. 地球科学进展, 2015, 30(6): 654-667.
[7] 曹 剑,吴 明,王绪龙,胡文瑄,向宝力,孙平安,施春华,鲍海娟. 油源对比微量元素地球化学研究进展[J]. 地球科学进展, 2012, 27(9): 925-937.
[8] 杨吉龙,韩冬梅,苏小四,肖国强,赵长荣,宋庆春,汪娜. 环境同位素特征对滨海岩溶地区海水入侵过程的指示意义[J]. 地球科学进展, 2012, 27(12): 1344-1352.
[9] 黄建国,李虎杰,李文杰,董 磊. 贵州戈塘金矿萤石微量元素特征及钐—钕测年[J]. 地球科学进展, 2012, 27(10): 1087-1093.
[10] 单慧媚,马腾,刘存富,刘玲,杨杰. 有机溴化物的溴同位素测试技术及其生物地球化学指示意义[J]. 地球科学进展, 2011, 26(8): 811-821.
[11] 陈莹,庄国顺,郭志刚. 近海营养盐和微量元素的大气沉降[J]. 地球科学进展, 2010, 25(7): 682-690.
[12] 胡耀武,Michael P.Richards,刘武,王昌燧. 骨化学分析在古人类食物结构演化研究中的应用[J]. 地球科学进展, 2008, 23(3): 228-235.
[13] 马安来;张水昌;张大江;金之钧. 生物降解原油地球化学研究新进展[J]. 地球科学进展, 2005, 20(4): 449-454.
[14] 腾格尔;刘文汇;徐永昌;陈践发. 无机地球化学参数与有效烃源岩发育环境的相关研究[J]. 地球科学进展, 2005, 20(2): 193-200.
[15] 王将克;邹和平;郑卓. 农业生物地球化学———新兴的边缘学科[J]. 地球科学进展, 2004, 19(5): 852-859.
阅读次数
全文


摘要