[1] Ishihara S. The magnetite-series and ilmentite-series granitic rocks[J].Mining Geology, 1977, 27:293-305. [2] Ishihara S. The granitoid series and mineralization [J]. Economic Geology,1981, 75th Anniversary Volume: 458-484. [3] Takagi T, Tsukimura K. Genesis of oxidized-and reduced-type granite[J].Economic Geology,1997,92:81-86. [4] Whitney J A. Fugacities of sulfurous gases in pyrrhotite-bearing magmas[J].American Mineralogist, 1984,60:69-78. [5] Carroll M , Rutherford J M. The stability of igneous anhydrite: experimental results and implications for sulfur behavior in the 1982 El Chichon trachyandesite and other evolved magmas[J]. Journal of Petrology, 1987,28:781-801. [6] Carroll M R, Rutherford M J. Sulfide and sulfate saturation in hydrous silicate melts [J]. Journal of Geophysics Researcher ,1985,90:C601-612 [7] Luhr J F. Experimental phase relations of water -and -sulfur-saturatured arc magmas and the 1982 eruptions of El Chichon volcano[J]. Journal of Petrology ,1990,31:1 071-1 114. [8] Streck J M, Dilles J H. Sulfur evolution of oxidized arc magmas as recorded in apatite from a porphyry copper batholith[J].Geology,1998,26:523-526. [9] Imai A, Listanco E L, Fujii T. Petrologic and sulfur isotopic significance of highly oxidized and sulfur-rich magma of Mt.Pinatubo, Philippines [J].Geology ,1993,21:699-702. [10] Peng G, Luhr J F, McGee J J. Factors controlling sulfur concentrations in volcanic apatite[J]. American Mineralogist,1997,82:1 210-1 224. [11] Piccoli P, Candela P. Apatite in felsic rocks:A model for the estimation of initial halogen concentrations in the Bishop Tuff(Long Valley)and Tuolumne lntrusive suite(Sierra Nevada batholith) magmas[J]. American Journal of Sciences,1994,294:92-135. [12] Lynton S J ,Candela P A, Piccoli P M. An experimental study of the partitioning of copper between pyrrhotite snd a high silica rhyolitic melt[J].Economic Geology,1993,88:901-915. [13] Candela P A. Magmatic ore-forming fluids: Thermodynamic and mass transfer calculation of melt concentrations[J]. Review Economic Geology,1989,4:203-221. [14] Sillitoe R H. Characteristics and controls of the largest porphyry copper-gold and epithermal gold deposits in the circum-Pacific region[J]. Australian Journal of Earth Sciences, 1997, 44: 373-388. [15] Tarkian M, Stribrny B. Platinum-group elements in porphyry copper deposit, a reconnaissance study [J]. Mineralogy and Petrology,1999,65:161-183. [16] Gammons C H, Bloom M S, Yu Y. Experimental investigation of the hydrothermal geochemistry of platinum and palladium,I, Solubility of platinum and palladium sulphide minerals in NaCl/H2SO4 solutions at 300℃[J]. Geochimica et Cosmochimica Acta, 1992,56:3 881-3 894. [17] Pasteris J D. Mount Pinatubo volcano and “negative”porphyry copper deposits[J]. Geology, 1996, 24:1 075-1 078. [18] Whitney J A, Stomer J C. Igneous sulfides in the Fish canyon tuff and the role of S in calc-alkaline magmas [J]. Geology,1983, 11:99-102. [19] Mysen B O , Popp R K. Solubility of sulfur in CaMgSi2O6 and NaAlSi3O8 melts at high pressure and temperature withcontrolled O2 and S2 [J]. American Journal of Science,1981,280:78-92. [20] Mathez E A.Sulfur solubility and magmatic sulfides in submarine basalt glass[J]. Journal of Geophysical Research,1976,81:4 269-4 276. [21] Carroll M R, Rutherford M J. Sulfur solubility and anhydrite saturation in hydrous magmas[J].Lunar Planet Science Confference,1984,XV:139-140. [22] Wendlandt R F. Sulfur saturation of basalt and andesite melts at high pressures and temperatures [J]. American Mineralogist , 1982,67:877-885. [23] Mavrogenes J A, O'Nell H St C. The relative effects of pressure, temperature and oxygen fugacity on the solubility of sulfide in mafic magmas.[J]. Geochimica et Cosmochimica Acta,1999,63:1 173-1 180. [24] Carroll M R, Webster J D. Solubilities of sulfur, noble gases, nitrogen, chlorine, and fluorine in magmas[J]. Reviews in Mineralogy,1994,30:231-271. [25] Sasaki A, Ishihara S. Sulfur isotopic composition of the magnetite-series and ilmenite-series granitoids in Japan[J]. Contributions to Mineralogy and Petrology,1979,68:107-115. [26] Ishihara S, Sasaki A. Sulfur isotopic ratios of the magnetite-series and ilmenite-series granitoids of the sierra Nevada batholith—a reeconnaissance study[J]. Geology,1989,17:788-791 [27] Rye R O, Luhr J F, Wasserman M D. Sulfur and oxygen isotopic systematics of the 1982 eruptions of El Chichon volcano,Chiapas,Mexioco [J]. Journal of Vocanology and Geothermal Research,1984,23:109-123. [28] Arancibia O N, Clark A H. Early magnetite-amphibole-plagioclase alteration-mineralization in the Island Copper porphyry copper-gold-molybdenum deposit,British Columbia[J]. Economic Geology,1996,91:402-438. [29] Hattori K. High-sulfur magma,a product of fluid discharge from underlying mafic magma:evidence from Mount Pinatubo,Philippines[J]. Geology ,1993, 21:1 083-1 086. [30] Sigurdsson H. Pre-eruption compositional grasients and mixing of andesite and dacite magma erupted from Nevado del Ruiz Vilcano,Colombia in 1985[J]. Journal of Vocanology and Geothermal Research, 1990, 41:127-151. [31] Pallister J S. A basalt trigger for the 1991 eruptions of Pinatubo volcano?[J]. Nature ,1992,356:426-428. [32] Burnham C W, Ohmoto H. Later-stage processes of felsic magmatism[J]. Mining Geology (Special Issue),1980,8:1-11. [33] Candela P A. Toward a thermodynamic model for the halogens in magmatic systems: Anapplication to melt-vapour-apatite equilibria[J]. Chemical Geology,1986,57:289-301. [34] Webster J D. Fluid-melt interaction involving Cl-rich granites:Experimental study from 2 to 8 kbar[J]. Geochimica et Cosmochimica Acta ,1992,56:659-678. [35] Webster J D. Water solubility and chlorine partitioning in Cl-rich granitcsystems: Effects of melt composition at 2 kbar and 800℃[J]. Geochimica et Cosmochimica Acta,1992,56:679-687. [36] Webster J D, Holloway J R. Experimental constrains on the partitioning of Cl between topaz rhyolite melt and H2O and H2O+CO2 fluids:New implications granitic differentiation and ore deposition [J]. Geochimica et Cosmochimica Acta ,1988,52:2 091-2 105. [37] Shinohara H. Exsolution of immiscible vapor and liquid phases froma crystallizing silicate melt: Implications for chlorine and metal transport[J]. Geochimica et Cosmochimica Acta ,1994, 58: 5 215-5 224. [38] Metrich N, Rutherford M J. Experimental study of chlorine behavior in hydrous silicic melts[J]. Geochimica et Cosmochimica Acta ,1992,56:607-616. [39] Webster J D. Exsolution of Cl-bearing fluids from chlorine-enriched mineralizing granitic magmas and implications for ore metal transport[J]. Geochimica et Cosmochimica Acta ,1997, 61: 1 017-1 030. [40] Webster J D . Chloride solubility in felsic melts and the role of chloride in magmatic degassing [J]. Journal of Petrology,1997,38:1 793-1 807. [41] Webster J D, Rebbert C R. Geochemical evidence of fluid saturation in felsic magma determined through experimental investigation of H2O and Cl solubity in F-enriched rhyolite melts[J]. Contribution to Mineralogy and Petrology, 1998,132:198-207. [42] Cline J S , Bodnar R J . Can economic porphyry copper mineralization be generated by a typical calc-alkaline melt?[J]. Journal of Geophysical Research,1992,96:8 113-8 126. [43] Müller D, Groves D I. Direct and indirect association between potassic igneous rocks , shoshonite and gold-copper deposits[J]. Ore Geology Reviews,1993,8:383-406. [44] Candela P A , Piccoli P M. Moldel ore-metal partitioning from melts into vapor and vapor/brine mixtures [A]. In: Thompson J F H, ed. Magmas,Fluids,and Ore Deposits[C]. Ottawa: Mineralogical Association of Canada,1995.101-127. [45] Roedder E. Fluid inclusion evidence for immiscibility in magmatic differentiation [J]. Geochimica et Cosmochimica Acta ,1992,56:5-20. [46] Oxtoby S, Hamilton D L. The discrete association of water with Na2O and SiO2 in NaAl silicate melts[J]. Contrib Mineral Petrol, 1978,66:185-188. [47] Sheets R W, Nesbitt B E, Muehlenbachs K. Meteroic water component in magmaric fluids from porphyry copper mineralization, Babine Lake area,British Columbia[J].Geology, 1996,24:1 091-1 094. [48] Bowman J R, Parry W T, Kropp W P, et al. Chemical and isotopic evolution of hydrothermal solutions at Bingham,Utah[J]. Economic Geology ,1987,82:395-428. [49] Dilles J H, Einaudi M T. Wall-rock alteration and hydrothermal flow paths about the Ann-Mason porphyry copper deposit,Nevada—A 6 km vertical reconstruction[J].Economic Geology, 1987, 87:1 963-2 001. [50] Dilles J H, Farmer G L, Field C W. Sodium-calcium alteration by non-magmatic saline fluid in porphyry copper deposits:results from Yerington, Nevada[J].Mineralogical Association of Canada Short Cources Series,1995,23:309-339. [51] Fountain R J. Geological relationships in the Panguna porphyry copper deposit , Bougainville Island,New Guinea.[J]. Economic Geology ,1972,67:1 049-1 064. [52] Bouse R M, Ruiz J, Tittley S R. Lead isotope compositions of late Cretaceous and Early Tertiary rocks and sulfide minerals in Arizona: Imlications for the sources of plutons and Metals in porphyry copper deposits[J]. Economic Geology ,1999,94:211-244. [53] Lang J R, Tittley S R. Isotopic and geochemical characteristics of Laramide magmatic systems in Arizona and implications for the genesis of porphyry copper deposits [J]. Economic Geology , 1998,93:138-170. [54] Liu Xianfan, Zhan Xinzhi, Gao Zhenmin, et al. Deep Xenolithes in alkali porphyry, Liuhe Yunnan, and implications to petrogenesis of alkali porphyry and associated mineralization.[J].Science in China(Ser.D),1999, 29:413-420.[刘显凡,战新志,高振敏,等.云南六合深源包体与富碱斑岩成岩成矿的关系 [J].中国科学(D辑),1999,29:413-420.] [55] McInnes B I A, Cameron E M. Carbonated,alkaline hybridizing melts from a sub-arc environment:Mantle wedge samples from the Tabar-Lihir_tanga_Feni arc,Papua New Guinea [J].Earth and Planetary Science Letters,1994,122:125-141. [56] Solomon M. Subduction, arc reversal, and the origin of porphyry copper-gold deposits in island arcs[J]. Geology,1990,18:630-633. [57] Force R E. Laramide alteration of Proterozic diabase: A likely contributor of copper to porphyry systems in Dripping Spring Mountains area, Southeastern Arizona[J]. Economic Geology,1998,93:171-183. |