地球科学进展 ›› 2001, Vol. 16 ›› Issue (4): 514 -519. doi: 10.11867/j.issn.1001-8166.2001.04.0514

综述与评述 上一篇    下一篇

斑岩铜矿研究的若干进展
王奖臻 1,2,李朝阳 1,胡瑞忠 1   
  1. 1.中国科学院地球化学研究所矿床地球化学开放研究实验室,贵州 贵阳 550002;
    2.成都理工学院,四川 成都 610059
  • 收稿日期:2000-07-26 修回日期:2000-12-22 出版日期:2001-08-01
  • 通讯作者: 王奖臻(1959-),男,河北人,副教授,主要从事矿床地质研究. E-mail:lzq@cdit.edu.cn
  • 基金资助:

    博士后基金项目“氧化性岩浆作用——斑岩铜矿形成的关键因素”;国家杰出青年基金项目“热液矿床矿化剂地球化学”(编号:49925309)资助.

RESEARCH PROGRESS IN PORPHYRY COPPER DEPOSIT

WANG Jiangzhen 1,2,LI Chaoyang 1,HU Ruizhong 1   

  1. 1. Open Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, CAS, Guiyang 550002,China;
    2. Chengdu University of Technology, Chengdu 610059,China
  • Received:2000-07-26 Revised:2000-12-22 Online:2001-08-01 Published:2001-08-01

综述了近年来斑岩铜矿研究领域取得的最新成果。包括6个方面:①斑岩铜矿与岩浆的氧化状态有关,只有氧化型岩浆才能形成斑岩铜矿,并提出了确定岩浆氧化状态的新标志;②岩浆中硫和氯的含量、存在状态、溶解度等对成矿有重要控制作用;③岩浆能否较早达到水过饱和状态,并发生流体相的出溶是成矿的另一个控制因素;④俯冲板片释放出的流体对上覆楔形地幔的交代作用是形成含矿岩浆的重要环节;④岩浆混合或底侵作用可能在某些斑岩铜矿成矿中起到了重要作用;⑤提出了一些新的成矿及找矿标志,如早期磁铁矿蚀变相。

The progress in research on porphyry copper deposit is viewed, including the following five aspects: (1) It has been proved that porphyry copper deposit is related to oxidized-type granite magma. And some new symbol which can be used to determine the redox state of magmas have been established. (2) The contents and solubility of sulfur and chlorine in magma are very important to the mineralization of porphyry copper deposit. (3) It has been illustrated that the earlier reached the oversaturation of water during magmatism, the more advantageous for the mineralizatuon. (4) Mantale metasomatism and magma mixing plays an important role in the origin of the magma which relate to the deposit. (5) Some new kinds of alteration in the deposit, such as magnetite alteration facies and Na-Ca alteration, have been discovered and studied.

中图分类号: 

[1] Ishihara S. The magnetite-series and ilmentite-series granitic rocks[J].Mining Geology, 1977, 27:293-305.
[2] Ishihara S. The granitoid series and mineralization [J]. Economic Geology,1981, 75th Anniversary Volume: 458-484.
[3] Takagi T, Tsukimura K. Genesis of oxidized-and reduced-type granite[J].Economic Geology,1997,92:81-86.
[4] Whitney J A. Fugacities of sulfurous gases in pyrrhotite-bearing magmas[J].American Mineralogist, 1984,60:69-78.
[5] Carroll M , Rutherford J M. The stability of igneous anhydrite: experimental results and implications for sulfur behavior in the 1982 El Chichon trachyandesite and other evolved magmas[J]. Journal of  Petrology, 1987,28:781-801.
[6] Carroll M R, Rutherford M J. Sulfide and sulfate saturation in hydrous silicate melts [J]. Journal of Geophysics Researcher ,1985,90:C601-612
[7] Luhr J F. Experimental phase relations of water -and -sulfur-saturatured arc magmas and the 1982 eruptions of El Chichon volcano[J]. Journal of Petrology ,1990,31:1 071-1 114.
[8] Streck J M, Dilles J H. Sulfur evolution of oxidized arc magmas as recorded in apatite from a porphyry copper batholith[J].Geology,1998,26:523-526.
[9] Imai A, Listanco E L, Fujii T. Petrologic and sulfur isotopic significance of highly oxidized and sulfur-rich magma of Mt.Pinatubo, Philippines [J].Geology ,1993,21:699-702.
[10] Peng G, Luhr J F, McGee J J. Factors controlling sulfur concentrations in volcanic apatite[J]. American Mineralogist,1997,82:1 210-1 224.
[11] Piccoli P, Candela P. Apatite in felsic rocks:A model for the estimation of initial halogen concentrations in the Bishop Tuff(Long Valley)and Tuolumne lntrusive suite(Sierra Nevada batholith) magmas[J]. American Journal of Sciences,1994,294:92-135.
[12] Lynton S J ,Candela P A,  Piccoli P M. An experimental study of the partitioning of copper between pyrrhotite snd a high silica rhyolitic melt[J].Economic Geology,1993,88:901-915.
[13] Candela P A. Magmatic ore-forming fluids: Thermodynamic and mass transfer calculation of melt concentrations[J]. Review Economic Geology,1989,4:203-221.
[14] Sillitoe R H. Characteristics and controls of the largest porphyry copper-gold and epithermal gold deposits in the circum-Pacific region[J]. Australian Journal of Earth Sciences, 1997, 44: 373-388.
[15] Tarkian M, Stribrny B. Platinum-group elements in porphyry copper deposit, a reconnaissance study [J]. Mineralogy and Petrology,1999,65:161-183.
[16] Gammons C H, Bloom M S, Yu Y. Experimental investigation of the hydrothermal geochemistry of platinum and palladium,I, Solubility of platinum and palladium sulphide minerals in NaCl/H2SO4 solutions at 300℃[J]. Geochimica et Cosmochimica Acta, 1992,56:3 881-3 894.
[17] Pasteris J D. Mount Pinatubo volcano and “negative”porphyry copper deposits[J]. Geology, 1996, 24:1 075-1 078.
[18] Whitney J A, Stomer J C. Igneous sulfides in the Fish canyon tuff and the role of S in calc-alkaline magmas [J]. Geology,1983, 11:99-102.
[19] Mysen B O , Popp R K. Solubility of sulfur in CaMgSi2O6 and NaAlSi3O8 melts at high pressure and temperature withcontrolled  O2 and  S2 [J]. American Journal of Science,1981,280:78-92.
[20] Mathez E A.Sulfur solubility and magmatic sulfides in submarine basalt glass[J]. Journal of Geophysical Research,1976,81:4 269-4 276.
[21] Carroll M R, Rutherford M J. Sulfur solubility and anhydrite saturation in hydrous magmas[J].Lunar Planet Science Confference,1984,XV:139-140.
[22] Wendlandt R F. Sulfur saturation of basalt and andesite melts at high pressures and temperatures [J]. American Mineralogist , 1982,67:877-885.
[23] Mavrogenes J A, O'Nell H St C. The relative effects of pressure, temperature and oxygen fugacity on the solubility of sulfide in mafic magmas.[J]. Geochimica et Cosmochimica Acta,1999,63:1 173-1 180.
[24] Carroll M R, Webster J D. Solubilities of sulfur, noble gases, nitrogen, chlorine, and fluorine in magmas[J]. Reviews in Mineralogy,1994,30:231-271.
[25] Sasaki A, Ishihara S. Sulfur isotopic composition of the magnetite-series and ilmenite-series granitoids in Japan[J]. Contributions to Mineralogy and Petrology,1979,68:107-115.
[26] Ishihara S, Sasaki A. Sulfur isotopic ratios of the magnetite-series and ilmenite-series granitoids of the sierra Nevada batholith—a reeconnaissance study[J]. Geology,1989,17:788-791
[27] Rye R O, Luhr J F, Wasserman M D. Sulfur and oxygen isotopic systematics of the 1982 eruptions of El Chichon volcano,Chiapas,Mexioco
[J]. Journal of Vocanology and Geothermal Research,1984,23:109-123.
[28] Arancibia O N, Clark A H. Early magnetite-amphibole-plagioclase alteration-mineralization in the Island Copper porphyry copper-gold-molybdenum deposit,British Columbia[J]. Economic Geology,1996,91:402-438.
[29] Hattori K. High-sulfur magma,a product of fluid discharge from underlying mafic magma:evidence from Mount Pinatubo,Philippines[J]. Geology ,1993, 21:1 083-1 086.
[30] Sigurdsson H. Pre-eruption compositional grasients and mixing of andesite and dacite magma erupted from Nevado del Ruiz Vilcano,Colombia in 1985[J]. Journal of Vocanology and Geothermal Research, 1990, 41:127-151.
[31] Pallister J S. A basalt trigger for the 1991 eruptions of Pinatubo volcano?[J]. Nature ,1992,356:426-428.
[32] Burnham C W, Ohmoto H. Later-stage processes of felsic magmatism[J]. Mining Geology (Special Issue),1980,8:1-11.
[33] Candela P A. Toward a thermodynamic model for the halogens in magmatic systems: Anapplication to melt-vapour-apatite equilibria[J]. Chemical Geology,1986,57:289-301.
[34] Webster J D. Fluid-melt interaction involving Cl-rich granites:Experimental study from 2 to 8 kbar[J]. Geochimica et Cosmochimica Acta ,1992,56:659-678.
[35] Webster J D. Water solubility and chlorine partitioning in Cl-rich granitcsystems: Effects of melt composition at 2 kbar and 800℃[J]. Geochimica et Cosmochimica Acta,1992,56:679-687.
[36] Webster J D, Holloway J R. Experimental constrains on the partitioning of Cl between topaz rhyolite melt and H2O and H2O+CO2 fluids:New implications granitic differentiation and ore deposition [J]. Geochimica et Cosmochimica Acta ,1988,52:2 091-2 105.
[37] Shinohara H. Exsolution of immiscible vapor and liquid phases froma crystallizing silicate melt: Implications for chlorine and metal transport[J]. Geochimica et Cosmochimica Acta ,1994, 58: 5 215-5 224.
[38] Metrich N, Rutherford M J. Experimental study of chlorine behavior in hydrous silicic melts[J]. Geochimica et Cosmochimica Acta ,1992,56:607-616.
[39] Webster J D.  Exsolution of Cl-bearing fluids from chlorine-enriched mineralizing granitic magmas and implications for ore metal transport[J]. Geochimica et Cosmochimica Acta ,1997, 61: 1  017-1 030.
[40] Webster J D . Chloride solubility in felsic melts and the role of chloride in magmatic  degassing [J]. Journal of Petrology,1997,38:1 793-1 807.
[41] Webster J D, Rebbert C R. Geochemical evidence of fluid saturation in felsic magma determined through experimental investigation of H2O and Cl solubity in F-enriched rhyolite melts[J]. Contribution to Mineralogy and Petrology, 1998,132:198-207.
[42] Cline J S , Bodnar R J . Can economic porphyry copper mineralization be generated by a typical calc-alkaline melt?[J]. Journal of Geophysical Research,1992,96:8 113-8 126.
[43] Müller D, Groves D I. Direct and indirect association between potassic igneous rocks , shoshonite and gold-copper deposits[J]. Ore Geology Reviews,1993,8:383-406.
[44] Candela P A , Piccoli P M. Moldel ore-metal partitioning from melts into vapor and vapor/brine mixtures [A]. In: Thompson J F H, ed. Magmas,Fluids,and Ore Deposits[C]. Ottawa: Mineralogical Association of Canada,1995.101-127.
[45] Roedder E. Fluid inclusion evidence for immiscibility in magmatic differentiation [J]. Geochimica et Cosmochimica Acta ,1992,56:5-20.
[46] Oxtoby S, Hamilton D L. The discrete association of water with Na2O and SiO2 in NaAl silicate melts[J]. Contrib Mineral Petrol, 1978,66:185-188. 
[47] Sheets R W, Nesbitt B E, Muehlenbachs K. Meteroic water component in magmaric fluids from porphyry copper mineralization, Babine Lake area,British Columbia[J].Geology, 1996,24:1 091-1 094.
[48] Bowman J R, Parry W T, Kropp W P, et al. Chemical and isotopic evolution of hydrothermal solutions at Bingham,Utah[J]. Economic Geology ,1987,82:395-428.
[49] Dilles J H, Einaudi M T. Wall-rock alteration and hydrothermal flow paths about the Ann-Mason porphyry copper deposit,Nevada—A 6 km vertical reconstruction[J].Economic Geology, 1987, 87:1 963-2 001.
[50] Dilles J H, Farmer G L, Field C W. Sodium-calcium alteration by non-magmatic saline fluid in porphyry copper deposits:results from Yerington, Nevada[J].Mineralogical Association of Canada Short Cources Series,1995,23:309-339.
[51] Fountain R J. Geological relationships in the Panguna porphyry copper deposit , Bougainville Island,New Guinea.[J]. Economic Geology ,1972,67:1 049-1 064.
[52] Bouse R M, Ruiz J, Tittley S R. Lead isotope compositions of late Cretaceous and Early Tertiary rocks and sulfide minerals in Arizona: Imlications for the sources of plutons and Metals in porphyry copper deposits[J]. Economic Geology ,1999,94:211-244.
[53] Lang J R, Tittley S R. Isotopic and geochemical characteristics of Laramide magmatic systems in Arizona and implications for the genesis of porphyry copper deposits [J]. Economic Geology , 1998,93:138-170.
[54] Liu Xianfan, Zhan Xinzhi, Gao Zhenmin, et al. Deep Xenolithes in alkali porphyry, Liuhe Yunnan, and implications to petrogenesis of alkali porphyry and associated mineralization.[J].Science in China(Ser.D),1999, 29:413-420.[刘显凡,战新志,高振敏,等.云南六合深源包体与富碱斑岩成岩成矿的关系
[J].中国科学(D辑),1999,29:413-420.]
[55] McInnes B I A, Cameron E M. Carbonated,alkaline hybridizing melts from a sub-arc environment:Mantle wedge samples from the Tabar-Lihir_tanga_Feni arc,Papua New Guinea [J].Earth and Planetary Science Letters,1994,122:125-141.
[56] Solomon M. Subduction, arc reversal, and the origin of porphyry copper-gold deposits in island arcs[J]. Geology,1990,18:630-633.
[57] Force R E. Laramide alteration of Proterozic diabase: A likely contributor of copper to porphyry systems in Dripping Spring Mountains area, Southeastern Arizona[J]. Economic Geology,1998,93:171-183.

[1] 宋扬, 唐菊兴, 曲晓明, 王登红, 辛洪波, 杨超, 林彬, 范淑芳. 西藏班公湖—怒江成矿带研究进展及一些新认识[J]. 地球科学进展, 2014, 29(7): 795-809.
[2] 熊欣, 徐文艺, 贾丽琼, 李骏. 斑岩铜矿成矿构造背景研究进展[J]. 地球科学进展, 2014, 29(2): 250-264.
[3] 倪师军,徐争启,张成江,宋 昊,罗 超. 西南地区黑色岩系铀成矿作用及成因模式探讨[J]. 地球科学进展, 2012, 27(10): 1035-1042.
[4] 徐争启,程发贵,唐纯勇,宋 昊,张成江,倪师军,郭景腾,祁家明. 广西大新地区辉绿岩地质地球化学、年代学特征及其意义[J]. 地球科学进展, 2012, 27(10): 1080-1086.
[5] 张云国, 周朝宪. 斑岩铜矿床研究进展[J]. 地球科学进展, 2011, 26(11): 1173-1190.
[6] 姚素平,丁 海,胡凯,焦堃. 我国南方早古生代聚煤过程中硫的生物地球化学行为及成矿效应[J]. 地球科学进展, 2010, 25(2): 174-183.
[7] 梁海河;徐宝祥;刘黎平;葛润生. 偏振微波雷达探测大气研究进展及几个问题的考虑[J]. 地球科学进展, 2005, 20(5): 541-548.
[8] 安伟,曹志敏,郑建斌,刘激,陈敏. 古代与现代火山成因块状硫化物矿床研究进展[J]. 地球科学进展, 2003, 18(5): 773-782.
[9] 金瞰昆,杜振川,李世峰. 欧洲有机质成矿作用研究进展[J]. 地球科学进展, 2002, 17(5): 787-788.
[10] 周少平. 对与我国金属矿产资源探寻有关基础研究的思考和讨论[J]. 地球科学进展, 1999, 14(6): 555-558.
[11] 陈国能. 花岗岩成因与成矿理论研究进展——原地重熔说与元素地球化学场简介[J]. 地球科学进展, 1998, 13(2): 140-144.
[12] 李文渊. Re-Os同位素体系及其在岩浆Cu-Ni-PGE矿床研究中的应用[J]. 地球科学进展, 1996, 11(6): 580-584.
[13] 陈衍景,于方,魏绮英,高秀丽,常兆山,宋新宇. 陆内碰撞体制流体作用及成矿作用研究的意义和现状[J]. 地球科学进展, 1995, 10(4): 318-322.
[14] 高合明. 斑岩铜矿床研究综述[J]. 地球科学进展, 1995, 10(1): 40-46.
[15] 胡瑞忠. 花岗岩型铀矿床成因讨论——以华南为例[J]. 地球科学进展, 1994, 9(2): 41-46.
阅读次数
全文


摘要