Please wait a minute...
img img
高级检索
地球科学进展  2014, Vol. 29 Issue (2): 250-264    DOI: 10.11867/j.issn.1001-8166.2014.02.0250
综述与评述     
斑岩铜矿成矿构造背景研究进展
熊欣1, 徐文艺1, 贾丽琼2, 李骏1, 2
1. 中国地质科学院矿产资源研究所,国土资源部成矿作用与资源评价重点实验室,北京,100037; 2. 中国地质大学地球科学学院,北京,100083
Reviews of Structural Settings of Porphyry Copper Deposits in China
Xiong Xin1, Xu Wenyi1, Jia Liqiong2, Li Jun1, 2
1.Key Laboratory of Metallogenetics and Mineral Resource Assessment,Institute of Mineral Resources,Chinese Academy of Geological Sciences,Beijing 100037,China; 2.Faculty of Earth Sciences,China University of Geosciences,Beijing 100083,China
 全文: PDF(1421 KB)   HTML
摘要:

斑岩铜矿是指与具斑状结构的中酸性侵入岩伴生,蚀变与矿化受流体、构造控制且分带明显,矿石以细脉浸染状为主,低品位、大储量的铜矿床,是最重要的铜矿床类型。大地构造背景对斑岩铜矿的形成具有重要意义,经典的斑岩铜矿主要产于岛弧、陆缘弧环境。然而,近年来国内矿床学家发现,国内形成于大陆环境的斑岩铜矿与大洋板块俯冲、板块消减作用无关, 斑岩铜矿还可产于碰撞造山带,甚至是在陆内环境。相比之下,不同构造背景下形成的斑岩铜矿床含矿岩浆、成矿物质来源、矿床成因等方面存在一定差异与共性。综述了目前斑岩铜矿研究内容中的关于构造背景的一些重要观点和几个重要进展,对比了不同构造背景下形成的斑岩铜矿床的含矿岩浆、蚀变矿化、成矿流体等方面的共性与差异,以期对斑岩型矿床的成因与找矿提供一定的线索。

关键词: 斑岩铜矿构造环境成矿模型    
Abstract:

Porphyry copper refers to porphyritic felsic intrusive rocks while alteration and mineralization with obvious zoning are controlled by fluid and structure. Mineralization are disseminated and of low-grade. Porphyry copper is the most important type of copper deposit, which provides nearly three-quarters of copper in the world. Most porphyry Cu deposits occur in magmatic arc settings and in collisional orogen or intraplate settings. However,it fails to give a reasonable explanation in the collisional or orogen setting. In this paper, we review recent study on porphyry copper deposit about the tectonic setting, get an understanding of the differences and similarities between Porphyry Copper Deposit of China and that abroad. We also recognize tectonic setting and its structure for explaining the formation of the Porphyry Copper Deposit from the macro aspect.

Key words: Porphyry copper Deposits    Tectonic setting    Genetic model.
收稿日期: 2013-11-12 出版日期: 2014-02-10
:  P618.41  
基金资助:

国家科技支撑计划项目“九瑞矿集区大比例尺蚀变—流体地质填图与成矿规律研究”(2011BAB04B03)资助.

作者简介: 熊欣(1989-),女,福建邵武人,硕士研究生,主要从事矿床地球化学研究. E-mail:xiongxin_1989@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
熊欣
贾丽琼
徐文艺
李骏

引用本文:

熊欣, 徐文艺, 贾丽琼, 李骏. 斑岩铜矿成矿构造背景研究进展[J]. 地球科学进展, 2014, 29(2): 250-264.

Xiong Xin,Xu Wenyi,Jia Liqiong,Li Jun,. Reviews of Structural Settings of Porphyry Copper Deposits in China. Advances in Earth Science, 2014, 29(2): 250-264.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2014.02.0250        http://www.adearth.ac.cn/CN/Y2014/V29/I2/250

[1]Gao Heming. A summary of researches on porphyry copper deposits[J]. Advances in Earth Science, 1995, 10(1): 40-46.[高合明.斑岩铜矿床研究综述[J]. 地球科学进展, 1995, 10(1): 40-46.]
[2]Ma Ying. Development of porphyry copper deposit research and expectation[J]. Werstern Exploration Engineering, 2007,(9):89-92.[马瑛.斑岩铜矿的研究现状与展望[J]. 西部探矿工程, 2007, (9):89-92.]
[3]Li Xiaofeng, Liang Jincheng, Feng Zuohai, et al. Development of porphyry copper deposit research[J]. Journal of Guilin University of Technology, 2009,29(2):216-222.[李晓峰,梁金城,冯佐海,等.斑岩铜矿研究最新进展[J].桂林工学院学报,2009,29(2):216-222.]
[4]Hou Zengqian, Lü Qingtian, Wang Anjian, et al. Continental collision and related metallogeny:A case study of mineralization in Tibetan Orogen[J]. Mineral Deposits, 2003, 22(4): 319-333.[侯增谦,吕庆田,王安建,等.初论陆—陆碰撞与成矿作用——以青藏高原造山带为例[J].矿床地质, 2003, 22(4): 319-333.]
[5]Hou Zengqian, Mo Xuanxue, Gao Yongfeng, et al. Adakite, a possible host rock for porphyry copper deposits: Case studies of porphyry copper belts in Tibetan Plateau and in Northern Chile[J]. Mineral Deposits, 2003,22(1):1-12.[侯增谦,莫宣学,高永丰,等.埃达克岩:斑岩铜矿的一种可能的重要含矿母岩——以西藏和智利斑岩铜矿为例[J].矿床地质, 2003, 22(1):1-12.]
[6]Hou Zengqian, Qu Xiaoming, Wang Shuxian, et al. Molybdenite Re-Os age in Tibetan Plateau porphyry copper ore belt: Mineralization time and dynamic background applications[J]. Science in China(Series D), 2003, 33(7): 609-618.[侯增谦,曲晓明,王淑贤,等.西藏高原冈底斯斑岩铜矿带辉钼矿Re-Os 年龄: 成矿作用时限与动力学背景应用[J].中国科学:D辑, 2003, 33(7) : 609-618.]
[7]Hou Zengqian, Gao Yongfeng, Meng Xiangjin, et al. Genesis of adakitic porphyry and tectonic controls on the Gangdes Miocene porphyry copper belt in the Tibetan orogen[J]. Acta Petrologica Sinica, 2004, 20(2):239-248.[侯增谦,高永丰,孟祥金,等.西藏冈底斯中新世斑岩铜矿带:埃达克质斑岩成因与构造控制[J].岩石学报,2004,20(2):239-248.]
[8]Hou Zengqian, Mo Xuanxue, Yang Zhiming, et al. Metallogeneses in the collisional orogen of the Qinghai-Tibet Plateau: Tectonic setting, tempo-spatial distribution and ore deposit types[J].Geology in China, 2006, 33(2): 340-351.[侯增谦,莫宣学,杨志明,等.青藏高原碰撞造山带成矿作用:构造背景,时空分布和主要类型[J].中国地质, 2006, 33(2): 340-351.]
[9]Hou Zengqian, Qu Xiaoming, Yang Zhusen, et al. Metallogenesis in Tibetan collisional orogenic belt: Ⅲ Mineralization in post-collisional extension setting[J]. Mineral Deposits, 2006, 25(6):629-651.[侯增谦,曲晓明,杨竹森,等.青藏高原碰撞造山带:Ⅲ.后碰撞伸展成矿作用[J].矿床地质, 2006, 25(6):629-651.]
[10]Hou Zengqian, Pan Xiaofei, Yang Zhiming, et al. Porphyry Cu-(Mo-Au) deposits no related to oceanic-slab subduction examples from Chinese porphyry deposits in continental settings[J]. Geoscience, 2007, 21(2): 332-351.[侯增谦,潘小菲,杨志明,等.初论大陆环境斑岩铜矿[J].现代地质, 2007, 21(2): 332-351.]
[11]Yang Zhiming, Hou Zengqian. Porphyry Cu deposits in collisional orogen setting: A preliminary genetic model[J]. Geoscience, 2009, 28(5): 515-538.[杨志明,侯增谦.初论碰撞造山环境斑岩铜矿成矿模型[J].矿床地质, 2009, 28(5): 515-538.]
[12]Sillitoe R H. A plate tectonic model for the origin of porphyry copper deposits[J]. Economic Geology,1972, 67(2): 184-197.
[13]Titley S R, Beane R E. Porphyry copper deposits: Part I. Geology settings, petrology, and tectogenesis[J]. Economic Geology, 1981, 75: 214-269.
[14]Zhang Hongtao, Chen Renyi, Han Fanglin. Reunderstanding of metallogenic geological conditions of porphyry copper deposits in China[J]. Mineral Deposits,2004, 23(2): 150-163.[张洪涛,陈仁义,韩芳林.重新认识中国斑岩铜矿的成矿地质条件[J].矿床地质, 2004, 23(2): 150-163.]
[15]Zhang Hongtao, Rui Zongyao. Geological setting of the porphyry copper deposit series of China[J]. Acta Geologica Sinica,1991,(3):250-262.[张洪涛, 芮宗瑶.论中国斑岩铜矿系列的地质背景[J].地质学报,1991,(3):250-262.]
[16]Rui Zongyao, Hou Zengqian, Qu Xiaoming, et al. Metallogenetic epoch of Gangdese porphyry copper belt and uplift of Qinghai Tibet Plateau[J]. Mineral Deposits, 2003,22(3):217-225.[芮宗瑶,侯增谦,曲晓明,等.冈底斯斑岩铜矿成矿时代及青藏高原隆升[J].矿床地质,2003,22(3):217-225.]
[17]Rui Zongyao, Zhang Lisheng, Chen Zhenyu, et al. Approach on source rock or source region of porphyry copper deposits[J]. Acta Petrologica Sinica, 2004, 20(2): 229-238.[芮宗瑶,张立生,陈振宇,等. 斑岩铜矿的源岩或源区探讨[J].岩石学报,2004,20(2):229-238.]
[18]Rui Zongyao, Zhang Hongtao, Chen Renyi, et al. An approach to some problems of porphyry copper deposits[J]. Mineral Deposits, 2006, 25(4):491-499.[芮宗瑶,张洪涛,陈仁义,等. 斑岩铜矿研究中若干问题探讨[J].矿床地质,2006,25(4):491-499.]
[19]Yao Chunliang, Lu Jianjun, Guo Weimin, et al. The latest advances in researches on porphyry copper deposits[J]. Mineral Deposits,2007, 26(2): 221-229.[姚春亮,陆建军,郭维民,等.斑岩铜矿若干问题的最新研究进展[J].矿床地质,2007,26(2): 221-229.]
[20]Zeng Pusheng, Hou Zengqian, Gao Yongfeng, et al.The himalayan Cu-Mo-Au mineralization in the Eastern Indo-Asian collision zone: Constraints from Re-Os dating of Molybdenite[J].Geological Review, 2006, 52(1):72-84.[曾普胜,侯增谦,高永峰,等.印度—亚洲碰撞带东段喜马拉雅期铜—钼金矿床Re-Os 年龄及成矿作用[J].地质论评,2006,52(1):72-84.]
[21]Gustafson L B. Some major fact ors of porphyry copper genesis[J]. Economic Geology, 1978, 73(5): 600- 607.
[22]Pirajno F. Hydrothermal Mineral Deposits: Principles and Fundamental Concepts for the Exploration Geologist[M]. Verlag: Springer, 1992: 325-374.
[23]Mitchell A H G. Metallogenic belts and angle of dip of Benioff zones[J]. Nature, 1973, 245 (143): 49-52.
[24]James D, Sacks I S. Cenozoic formation of the central Andes: A geophysical perspective[C]∥Skinner B F, ed. Society of Economic Geologists Special Publication, 1999:1-25.
[25]Rosenbaum G, Giles D, Saxon M, et al. Subduction of the Nazca Ridge and the Inca Plateau: Insights into the formation of ore deposits in Peru[J]. Earth and Planetary Science Letters, 2005, 239(1/2):18-32.
[26]Cooke D R, Hollings P, Walsh J L. Giant porphyry deposits: Characteristics, distribution, and tectonic controls[J]. Economic Geology, 2005, 100(5):801-818.
[27]Sillitoe R H. Characteristics and controls of the largest porphyry copper-gold and epithermal gold deposits in the circum-Pacif ic region[J]. Australian Journal of Earth Sciences, 1997, 44(3): 373-388.
[28]Uyeda S, Nishiwaki C. Stress field, metallogenesis and mode of subduction: The continental crust and its mineral resources[J]. Geological Association of Canada, 1980, 20: 323-339.
[29]Richards J P. Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit formation[J]. Economic Geology, 2003, 98 (8):1 515-1 533.
[30]Masterman G J, Cooke D R, Berry R F, et al. Fluid chemistry, structural setting, and emplacement history of the Rosario Cu-Mo porphyry and Cu-Ag-Au epithermal veins, Collahuasi district, northern Chile[J]. Economic Geology, 2005, 100: 835-862.
[31]Takada A. The influence of regional stress and magmatic input on styles of monogenetic and polygenetic volcanism[J]. Journal of Geophysical Research, 1994, 99: 13 563-13 573.
[32]Sillitoe R H. Porphyry copper systems[J]. Economic Geology, 2010, 105(1): 3-41.
[33]Tosdal R M, Richards J P. Magmatic and structural controls on the development of porphyry Cu±Mo±Au deposits[J]. Reviews in Economic Geology, 2001,14: 157-181.
[34]Presnell R D. Structural controls on the plutonism and metallogeny in the Wasatch and Oquirrh Mountains, Utah[J]. Society of Economic Geologists Guidebook Series, 1997, 29: 1-9.
[35]Sasso A M, Clark A H. The farallón negro group, northwest Argentina: Magmatic, hydrothermal and tectonic evolution and implication for Cu-Au metallogeny in the Andean back-arc[J]. Society of Economic Geologists Newsletter, 1998, 34 (1): 8-18.
[36]Halter W E, Bain N, Becker K, et al. From andesitic volcanism to the formation of a porphyry Cu-Au mineralizing magma chamber: The farallón negro volcanic complex, northwestern Argentina[J]. Journal of Volcanology and Geothermal Research, 2004, 136:1-30.
[37]Richards J P, Boyce A J, Pringle M S. Geologic evolution of the Escondida area, northern Chile: A model for spatial and temporal localization of porphyry Cu mineralization[J]. Economic Geology, 2001, 96 (2): 271-305.
[38]Lowell J D, Guilbert J M. Lateral and vertical alteration-mineralization zoning in porphyry ore deposits[J]. Economic Geology, 1970, 65:373-408.
[39]Hollister V F. Geology of the Porphyry Copper Deposits of the Western Hemisphere[M]. Minneapolis: Society of Mining Engineers of the American Institute of Mining, Metallurgical, and Petroleum Engineers, 1978.
[40]Dewey J F. Episodicity, sequence and style at convergent plate boundaries[J]. Geological Association of Canada Special Paper, 1980, 20: 553-573.
[41]Hedenquist J W, Richards J P. The influence of geochemical techniques on the development of genetic models for porphyry copper deposits[J]. Reviews in Economic Geology, 1998, 10: 235-256.
[42]Singer D A, Menzie W D, Berger B R. Porphyry copper deposit density[J]. Economic Geology, 2005,100: 491-514.
[43]Ulrich T, Heinrich C A. Geology and alteration geochemistry of the porphyry Cu-Au deposit at Bajo de la Alumbrera, Argentina[J]. Economic Geology, 2001, 96: 1 719-1 742.
[44]Mueller D, Groves D I. Potassic Igneous Rocks and Associated Gold-Copper Mineralization(3rd)[M]. Berlin: Springer, 2000: 252.
[45]Thieblemont D, Stein G, Lescuyer J L. Epithermal and porphyry deposits: The adakitic connection[J]. Earth and Planetary Sciences, 1997, 329:243-250.
[46]McInnes B I A, Cameron E M. Carbonated, alkaline hybridizing melts from a sub-arc environment: Mantle wedge samples from the Tabar-Lihir-Tanga-Feni arc, Papua New Guinea[J]. Earth and Planetary Science Letters, 1994, 122 (1): 125-141.
[47]Rush P M, Seegers H J. Ok Tedi copper-gold deposits[J]. Australasian Institute of Mining and Metallurgy Monograph,1990, 14(2): 1 747-1 754.
[48]Ishihara S. The granitoid series and mineralization[J].Economic Geology, 1981,75: 458-484.
[49]Seedorff E, Dilles J H, Proffett J M, et al. Porphyry deposits: Characteristics and origin of hypogene features[J]. Economic Geology, 2005,100: 251-298.
[50]Enns S G, Thompson J F H, Stanley C R, et al. The Galore Creek porphyry copper-gold deposits, northwestern British columbia[J]. Canadian Institute of Mining, Metallurgy and Petroleum, 1995,46: 630-644.
[51]Kósaka K, Wakita K. Some geological features of the Mamut porphyry copper deposit, Sabah, Malaysia[J]. Economic Geology, 1978, 73: 618-627.
[52]Meyer C, Hemley J J. Wall rock alteration[M]∥Barnes H L, ed. Geochemistry of Hydrothermal Ore Deposits. New York: Holt, Rinehart and Winston, 1967: 166-235.
[53]Ford J H. A chemical study of alteration at the Panguna porphyry copper deposit, Bougainville, Papua New Guinea[J]. Economic Geology, 1978, 73: 703-720.
[54]Cannell J, Cooke D R, Walshe J L, et al. Geology, mineralization, alteration, and structural evolution of the El Teniente porphyry Cu-Mo deposit[J]. Economic Geology, 2005,100: 979-1 003.
[55]Perelló J A, Fleming J A, O’Kane K P, et al. Porphyry copper-gold-molybdenum deposits in the Island copper cluster, northern Vancouver Island, British Columbia[J]. Canadian Institute of Mining, Metallurgy and Petroleum, 1995, 46: 214-238.
[56]Arancibia O N, Clark A H. Early magnetite-amphibole-plagioclase alteration-mineralization in the Island copper porphyry copper-goldmolybdenum deposit, British Columbia[J]. Economic Geology, 1996, 91: 402-438.
[57]Sillitoe R H, Gappe I M. Philippine Porphyry Copper Deposits: Geologic Setting and Characteristics[M]. Bangkok, Thailand: United Nations ESCAP, CCOP Technical Publication, 1984, 14: 89.
[58]Wilson A J, Cooke D R, Harper B R. The ridgeway gold-copper deposit: A high-grade alkalic porphyry deposit in the Lachlan fold belt, New South Wales, Australia[J]. Economic Geology, 2003, 98: 1 637-1 666.
[59]Perelló J, Neyra C, Posso H, et al. Cotabambas: Late Eocene Porphyry Copper-Gold Mineralization Southwest of Cuzco[M]. Peru: Society of Economic Geologists Special Publication, 2004: 213-230.
[60]Titley S R. The style and progress of mineralization and alteration in porphyry copper systems: American Southwest[M]∥Titley S R, ed. Advances in Geology of the Porphyry Copper Deposits, Southwestern North America. Tucson: University of Arizona Press, 1982: 93-116.
[61]Rusk B G, Reed M H, Dilles J H, et al. Compositions of magmatic hydrothermal fluids determined by LAICP-MS of fluid inclusions from the porphyry copper-molybdenum deposit at Butte, MT[J]. Chemical Geology, 2004, 210: 173-199.
[62]Rusk B G, Reed M H, Dilles J H. Fluid inclusion evidence for magmatic-hydrothermal fluid evolution in the porphyry copper-molybdenum deposit at Butte, Montana[J]. Economic Geology,2008, 103: 307-334.
[63]Ambrus J. Geology of the El Abra porphyry copper deposit, Chile[J]. Economic Geology, 1977, 72: 1 062-1 085.
[64]Dean D A, Graichen R E, Barrett L F, et al. Geologic overview of the El Abra porphyry copper deposit, Chile[M]∥Green S M, Struhsacker E, eds. Geology and Ore Deposits of the American Cordillera. Field Trip Guidebook Compendium: Reno, Geological Society of Nevada, 1996: 457-464.
[65]Proffett J M. Geology of the Bajo de la Alumbrera porphyry copper-gold deposit, Argentina[J]. Economic Geology, 2003, 98: 1 535-1 574.
[66]Perelló J, Brockway H, Martini R. Discovery and geology of the esperanza porphyry copper-gold deposit, Antofagasta region, Northern Chile[J]. Society of Economic Geologists,2004,11: 167-186.
[67]Harris A C, Golding S D, White N C. Bajo de la Alumbrera copper-gold deposit: Stable isotope evidence for a porphyry-related hydrothermal system dominated by magmatic aqueous fluids[J]. Economic Geology, 2005, 100: 863-886.
[68]Bouzari F, Clark A H. Prograde evolution and geothermal affinities of a major porphyry copper deposit: The Cerro Colorado hypogene protore, I Región, northern Chile[J]. Economic Geology, 2006, 101: 95-134.
[69]Gustafson L B, Hunt J P. The porphyry copper deposit at El Salvador, Chile[J]. Economic Geology, 1975, 70: 857-912.
[70]Burnham C W. Hydrothermal fluids at the magmatic stage[M]∥Barnes H L, ed. Geochemistry of Hydrothermal Ore Deposits.New York: Holt, Rinehart and Winston, 1967: 34-76.
[71]Hedenquist J W, Lowenstern J B. The role of magmas in the formation of hydrothermal ore deposits[J]. Nature, 1994, 370(18): 519-527.
[72]Harris A C, Kamenetsky V S, White N C, et al. Melt inclusions in veins: Linking magmas and porphyry Cu deposits[J]. Science, 2003, 302: 2 109-2 111.
[73]Burnham C W, Ohmoto H. Late-stage processes of felsic magmatism[J]. Mining Geology, 1980, 8: 1-11.
[74]Candela P A, Holland H D. A mass transfer model for copper and molybdenum in magmatic hydrotheral systems: The origin of porphyry-type ore deposits[J]. Economic Geology,1986, 81: 1-19.
[75]Nagaseki H, Hayashi K. Experimental study of the behavior of copper and zinc in a boiling hydrothermal system[J]. Geology, 2008, 36: 27-30.
[76]Pokrovski G S, Borisova A Y, Harrichoury J C. The effect of sulfur on vapour-liquid fractionation of metals in hydrothermal systems[J]. Earth and Planetary Science Letters, 2008, 266: 345-362.
[77]Pokrovski G S, Tagirov B R, Schott J, et al. A new view on gold speciation in sulfur-bearing hydrothermal fluids from in situ X-ray absorption spectroscopy and quantum-chemical modeling[J]. Geochimica et Cosmochimica Acta, 2009, 73: 5 406-5 427.
[78]Ulrich T, Mavrogenes J. An experimental study of the solubility of molybdenum in H2O and KCl-H2O solutions from 500 ℃ to 800 ℃, and 150 to 300 MPa[J]. Geochimica et Cosmochimica Acta,2008, 72: 2 316-2 330.
[79]Carten R B. Sodium-calcium metasomatism: Chemical, temporal, and spatial relationships at the Yerington, Nevada, porphyry copper deposit[J]. Economic Geology, 1986, 81: 1 495-1 519.
[80]Seedorff E, Barton M D, Stavast W J A, et al. Root zones of porphyry systems: Extending the porphyry model to depth[J]. Economic Geology, 2008, 103: 939-956.
[81]Bodnar R J. Fluid-inclusion evidence for a magmatic source for metals in porphyry copper deposits[J]. Mineralogical Association of Canada Short Course Series, 1995, 23: 139-152.
[82]Williams-Jones A E, Heinrich C A. Vapor transport of metals and the formation of magmatic-hydrothermal ore deposits[J]. Economic Geology, 2005, 100: 1 287-1 312.
[83]Hedenquist J W, Arribas A J, Reynolds T J. Evolution of an intrusion-centered hydrothermal system: Far Southeast-Lepanto porphyry and epithermal Cu-Au deposits, Philippines[J]. Economic Geology, 1998, 93: 373-404.
[84]Heinrich C A, Driesner T, Stefánsson A,et al. Magmatic vapor contraction and the transport of gold from the porphyry environment to epithermal ore deposits[J].Geology, 2004, 32: 761-764.
[85]Heinrich C A. The physical and chemical evolution of low-salinity magmatic fluids at the porphyry to epithermal transition: A thermodynamic study[J]. Mineralium Deposita, 2005, 39: 864-889.
[86]Sheppard S M F, Nielsen R L, Taylor H J. Hydrogen and oxygen isotope ratios in minerals from porphyry copper deposits[J]. Economic Geology, 1971, 66: 515-542.
[87]Taylor H J. The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition[J]. Economic Geology, 1974, 69: 843-883.
[88]Bouse R M, Ruiz J, Titley S R, et al. Lead isotope compositions of Late Cretaceous and early Tertiary igneous rocks and sulfide minerals in Arizona; implications for the sources of plutons and metals in porphyry copper deposits[J]. Economic Geology, 1999, 94(2): 211-244.
[89]Hou Zengqian. Metallogensis of continental collision[J]. Acta Geologica Sinica, 2010, 84(1): 30-58.[侯增谦.大陆碰撞成矿论[J]. 地质学报, 2010, 84(1): 30-58.]
[90]Leng Chengbiao, Zhang Xingchun, Chen Yanjing, et al. Discussion on the relationship between Chinese porphyry copper deposits and adakitic rocks[J]. Earth Science Froniters, 2007, 14(5): 199-210.[冷成彪, 张兴春, 陈衍景, 等. 中国斑岩铜矿与埃达克(质)岩关系探讨[J]. 地学前缘, 2007, 14(5): 199-210.]
[91]Hou Zengqian, Mo Xuanxue, Gao Yongfeng, et al. Adakite, a possible host rock for Porphyry copper deposits: Case studies of porphyry copper belts in Tibetan Plateau and in northern Chile[J]. Mineral Deposits, 2003, 22(1): 1-12.[侯增谦,莫宣学,高永丰,等.埃达克岩:斑岩铜矿的一种可能的含矿母岩——以西藏和智利斑岩铜为例[J]. 矿床地质, 2003, 22(1): 1-12.]
[92]Zhang Qi, Wang Yan, Qian Qing, et al. The characteristics and tectonic-metallogenic significances of the adakites in Yanshan period from eastern China[J]. Acta Geologica Sinica, 2001, 17(2): 236-244.[张旗, 王焰, 钱青, 等. 中国东部燕山期埃达克岩的特征及其构造—成矿意义[J]. 岩石学报, 2001, 17(2): 236-244.]
[93]Zhao Wenjin. Deep tectono-magmatic setting for metallogenesis of large porphyry copper deposits[J]. Geology in China, 2007, 34(2): 179-205.[赵文津. 大型斑岩铜矿成矿的深部构造岩浆活动背景[J]. 中国地质, 2007, 34(2): 179-205.]
[94]Defant M J, Drummond M S. Derivation of some modern arc magmas by melting of young subducted lit hosphere[J]. Nature, 1990, 34 : 662-665.
[95][JP2]Zhang Qi,Wang Yan,Wang Yuanlong.On the relationship between Adakite and its tectonic setting[J].Geotectonica et Metallogenia,2003,27(2):101-108.[张旗, 王焰,王元龙.埃达克岩与构造环境[J].大地构造与成矿学,2003, 27(2):101-108.][JP]
[96]Wang Qiang, Zhao Zhenhua, Xu Jifeng, et al. Adakite-like rocks and mineralization in Yanshan period from eastern Yangtze Block[J]. Science in China(Series D), 2002, 32(Suppl.):127-136.[王强,赵振华,许继峰,等.扬子地块东部燕山期埃达克质(adakite-like)岩与成矿[J].中国科学:D辑,2002,32(增刊) :127-136.]
[97]Wang Qiang, Zhao Zhenhua, Xiong Xiaolin, et al. Melting of the underplated basaltic lower crust: Evicence from the Shaxi adakitic sodic quartz diorite-pophyrites, Anhui Province, China[J]. Geochimica, 2001, 30(4) : 353-362.[王强, 赵振华, 熊小林, 等. 底侵玄武下地壳的熔融:来自安徽沙溪adakite质富钠石英闪长玢岩的证据[J]. 地球化学, 2001, 30(4) : 353-362.]
[98]Hou Z Q , Gao Y F , Qu X M , et al. Origin of adakitic intrusives generated during mid-Miocene east-west extension in sout hern Tibet[J]. Earth and Planetary Science Letters, 2004,220:139-155.
[99]Hou Zengqian. Porphyry Cu-Mo-Au Deposits: Some new insights and advances[J]. Earth Science Froniters, 2004, 11(1): 132-139.[侯增谦.斑岩Cu- Mo-Au矿床:新认识与新进展[J]. 地学前缘, 2004, 11(1): 132-139.]
[100]Marending M, Luder H U, Brunner T J, et al. Effect of sodium hypochlorite on human root dentine-mechanical, chemical and structural evaluation[J]. International Endodontic Journal, 2007, 40(10): 786-793.
[101]Leech M L. Arrested orogenic development: Eclogitization, delamination and tectonic collapse[J]. Earth and Planetary Science Letters, 2001, 185: 149-159.
[102]Turner G, Burnard P, Ford J L, et al. Tracing fluid sources and interactions[J]. Philosophical Transactions of the Royal Society of London,1993, 344: 127-140.
[103]Gao Yongfeng, Hou Zengqian, Wei Ruihua. Neogene porphyries from Gangdese: Petrological, geochemical characteristics and geodynamic significances[J]. Acta Petrologica Sinica, 2003, 19(3):418-428.[高永丰, 侯增谦, 魏瑞华. 冈底斯晚第三纪斑岩的岩石学、地球化学及其地球动力学意义[J]. 岩石学报, 2003, 19(3): 418-428.]
[104]Qu Xiaoming, Hou Zengqian, Guo Lianjie, et al. Compositions and crustal contaminations of adakitic ore-bearing porphyries in the Gangdise Copper Belt:Nd, Sr, Pb and O isotope constraints[J]. Acta Geologica Sinica, 2004, 78(6): 813-821.[曲晓明, 侯增谦, 国连杰, 等. 冈底斯铜矿带埃达克质含矿斑岩的源区组成与地壳混染: Nd、Sr、Pb、O 同位素约束[J]. 地质学报, 2004, 78(6): 813-821.]
[105] Li Wuping, Li Xianhua, Lu Fengxiang, et al. Geolocail characteristics and its setting for volcanic rocks of early Cretaceous Yixian Formation in western Liaoning Province, eastern China[J]. Acta Petrologica Sinica, 2002, 18(2): 193-204.[李伍平, 李献华, 路凤香, 等. 辽西早白垩世义县组火山岩的地质特征及其构造背景[J]. 岩石学报, 2002, 18(2): 193-204.]
[1] 宋扬, 唐菊兴, 曲晓明, 王登红, 辛洪波, 杨超, 林彬, 范淑芳. 西藏班公湖—怒江成矿带研究进展及一些新认识[J]. 地球科学进展, 2014, 29(7): 795-809.
[2] 张云国, 周朝宪. 斑岩铜矿床研究进展[J]. 地球科学进展, 2011, 26(11): 1173-1190.
[3] 孙书勤,张成江,黄润秋. 板块汇聚边缘玄武岩大地构造环境的Th、Nb、Zr判别[J]. 地球科学进展, 2006, 21(6): 593-598.
[4] 栾锡武. 现代海底热液活动区的分布与构造环境分析[J]. 地球科学进展, 2004, 19(6): 931-938.
[5] 张树明,王方正. 玄武岩在研究岩石圈深部过程及构造背景中的应用[J]. 地球科学进展, 2002, 17(5): 685-692.
[6] 陶明信. 论中国含油气区的构造环境性质、分区及其成油气专属性[J]. 地球科学进展, 2001, 16(6): 746-754.
[7] 王奖臻,李朝阳,胡瑞忠. 斑岩铜矿研究的若干进展[J]. 地球科学进展, 2001, 16(4): 514-519.
[8] 杨学明,杨晓勇,M.J.Le Bas. 碳酸岩的地质地球化学特征及其大地构造意义[J]. 地球科学进展, 1998, 13(5): 457-466.
[9] 周鼎武,刘良,刘养杰,董云鹏. 大陆造山带元古宙构造体制研究的思路和方法探讨——以秦岭造山带为例[J]. 地球科学进展, 1996, 11(2): 185-190.
[10] 高合明. 斑岩铜矿床研究综述[J]. 地球科学进展, 1995, 10(1): 40-46.
[11] 张旗. 岩石化学[J]. 地球科学进展, 1992, 7(1): 84-.