[1]Ransome F L. The geology and Ore Deposits of the Bisbee Quadrangle, Arizona[M/OL]∥United States: Goverment Printing Office, 1904, 21:1-168. [2]Emmons W H. Principles of Economic Geology[M].New York: McGraw-Hill,1918. [3]Sillitoe R H. Porphyry copper systems: An invited paper[J]. Economic Geology, 2010, 105(1):3-41. [4]Nie Fengjun, Jiang Sihong,Zhao Shengmin. New advances of porphyry copper deposits[J]. Neimenggu Geology, 2000, 2(1):1-11.[聂凤军,江思宏,赵省民.斑岩型铜金矿床研究新进展[J]. 内蒙古地质, 2000, 2(1):1-11.] [5]Misra K C. Understanding Mineral Deposits[M]. USA: Kluwer Academic Publishers,2000:353-413. [6]Singer D A, Berger V I, Menzie W D, et al. Porphyry copper deposit density[J]. Economic Geology, 2005, 100(3):491-514. [7]Rui Zongyao, Zhang Lisheng,Chen Zhenyu, et al. Approach on source rock or source region of porphyry copper deposits[J]. Acta Petrologica Sinica, 2004, 20(2):229-238.[芮宗瑶,张立生,陈振宇,等.斑岩铜矿的源岩或源区探讨[J]. 岩石学报, 2004, 20(2):229-238.] [8]Lowell J D, Guilbert J M. Lateral and vertical alteration-mineralization zoning in porphyry ore deposits[J]. Economic Geology, 1970, 65(4):373-408. [9]Xiao Bo, Qin Kezhang, Li Guangming, et al.Distributions and characters of Zhibula-Langmujiaguo skarn Cu deposits environing the Qulong porphyry Cu-Mo deposit and their implications for ore-search towards to the deep subsurface[J]. Geology and Exploration, 2011, 47(1): 43-53.[肖波, 秦克章, 李光明,等. 冈底斯驱龙斑岩铜—钼矿区外围矽卡岩型铜矿的分布、特征及深部找矿意义[J].地质与勘探,2011,47(1):43-53.] [10]Patrick B R, Marco T E. The bingham canyon porphyry Cu-Mo-Au deposit. I. sequence of intrusions, vein formation, and sulfide deposition[J]. Economic Geology, 2010, 105(1):43-68. [11]Vry V H, Wilkinson J J, Seguel J, et al.Multistage intrusion, brecciation, and veining at El teniente, chile:Evolution of a nested porphyry system[J]. Economic Geology, 2010, 105(1):119-153. [12]Xu Rongke, Shan Liang, Zheng Youye, et al. Review and progress: Theory and exploration technology to porphyry copper deposit[J]. Geology and Mineral Resources of South China, 2011, 27(1):22-32.[许荣科,陕亮,郑有业,等.回顾与进展:斑岩铜矿理论研究及勘查技术[J]. 华南地质与矿产, 2011, 27(1):22-32.] [13]Yao Chunliang, Lu Jianjun, Guo Weimin, et al. The latest advances in researches on porphyry copper deposits[J]. Mineral Deposits, 2007, 26(2):221-229.[姚春亮,陆建军,郭维民,等.斑岩铜矿若干问题的最新研究进展[J]. 矿床地质, 2007, 26(2):221-229.] [14]Kerrich R, Goldfarb R, Groves D, et al. The geodynamics of world-class gold deposits: Characteristics, space-time distributions, and origins[J].Reviews in Economic Geology, 2000, 13:501-551. [15]Sillitoe R H, Perello J. Andean copper province: Tectonomagmatic settings, deposit types, metallogeny, exploration, and discovery[J]. Anniversary Volume in Economic Geology, 2005, 100:845-890. [16]Hedenquist J W, Arriba A J, Reynolds T J. Evolution of anintrusion-centered hydrothermal system: Far Southeast-Lepanto porphyry and epithermal Cu-Au deposits, Philippines[J]. Economic Geology, 1998, 93(4):373-404. [17]Cooke D R, Hollings P, Walshe J L. Giant Porphyry Deposits: Characteristics, distribution and tectonic controls[J]. Economic Geology, 2005, 100(5):801-818. [18]Sillitoe R H. Geotectonic setting of western Pacific gold deposits in basement tectonics,characterisation and comparison of Ancient and Mesozoic Continental Margins[M]∥Bartholomew M J, Hyndman D W, Mogok D W,eds.Basement Tectonics 8: Characterization and Comparison of Ancient and Mesozoic R Continental Margins. The Netherlands:Academic Publishers,1992:665-678. [19]Bainbridge A L, Corbett G J, Leach T M. The Nena high sulphidation system, Frieda River Copper, PNG[C]. Geology Exploration and Mining Conference Lae PNG. June 1994, Australasian Institute of Mining and Metallurgy,1994. [20]Sillitoe R H, Gappe I M. Philippine Porphyry Copper Deposits: Geologic Settings and Characteristics[R]. CCOP Technical Report,1984. [21]Shatwell D. Epithermal gold mineralization and Late Cenozoic magmatism in the Melanesian outer arc[J]. AIMM Proceedings Pacrim Conference, 1987:393-398. [22]Lindley D. Early Cainozoic stratigraphy and structure of the Gazelle Peninsular, east New Britain:An example of eitxtension tectonics in the New Britain arc-trench complex[J]. Australian Journal of Earth Science, 1988, 35(2):231-244. [23]Tu Guangchi. The development of the mineral deposit prospecting and research work in the past twenty years: A brief review[J].Mineral Deposits, 2001,20(1): 1-9.[涂光炽. 过去20年矿床事业发展的概略回顾[J]. 矿床地质, 2001,20(1): 1-9.] [24]Zhang Qi, Qin Kezhang, Wang Yuanlong, et al. Study on Adakite Broadened to challenge the Cu and Au exploration in China[J]. Acta Petrologica Sinica,2004, 20(2):195-205.[张旗, 秦克章, 王元龙, 等. 加强埃达克岩研究,开创中国Cu、Au等找矿工作的新局面[J]. 岩石学报, 2004, 20(2):195-205.] [25]Leng Chengbiao, Zhang Xingchun, Chen Yanjing, et al. Discussion on the relationship between Chinese porphyry copper deposits and adakitic rocks[J]. Earth Science Frontiers, 2007, 14(5):199-210.[冷成彪, 张兴春, 陈衍景, 等. 中国斑岩铜矿与埃达克(质)岩关系探讨[J]. 地学前缘, 2007, 14(5):199-210.][26]Zhang L C, Xiao W J, Qin K Z, et al. The adakite connection of the Tuwu-Yandong copper porphyry belt, eastern Tianshan, NW China: Trace element and Sr-Nd-Pb isotope geochemistry[J]. Mineralium Deposita, 2006, 41(2):188-200. [27]Li J X, Qin K Z, Li G M, et al. Magmatic-hydrothermal evolution of the Cretaceous Duolong gold-rich porphyry copper deposit in the Bangongco metallogenic belt, Tibet: Evidence from U-Pb and 40Ar/39Ar geochronology[J]. Journal of Asian Earth Sciences, 2011, 41(6):525-536. [28]Qin K Z, Sun S, Li J L, et al. Paleozoic epithermal Au and porphyry Cu deposits in north Xinjiang, China: Epochs, features, tectonic linkage and exploration significance[J].Resource Geology, 2002, 52(4): 291-300. [29]Sillitoe R H. A plate tectonic model for the origin of porphyry copper deposits[J]. Economic Geology,1972, 67(2):184-197. [30]Sillitoe R H. Characteristics and controls of the largest porphyry copper-gold and epithermal gold deposits in the circum-Pacific region[J].Australian Journal of Earth Sciences,1997, 44(3):373-388. [31]Von Huene R, Scholl D W. Observations at convergent margins concerning sediment subduction, subduction erosion, and the growth of continental crust[J].Reviews of Geophysics,1991, 29:279-316. [32]Kay S M, Godoy E, Kurtz A. Episodic arc migration, crustal thickening, subduction erosion, and magmatism in the south-central Andes[J].Geological Society of America Bulletin,2005, 117:67-88. [33]Sillitoe R H. Major regional factors favoring large size,high hypogene grade,elevated gold content and supergene oxidation and enrichment of porphyry copper deposit: A global perspective[C]∥Perth,Conference Proceedings: Glenside,South Australia,Australian Mineral Foundation, 1998:21-34. [34]Tosdal R M, Richards J P. Magmatic and structural controls on the development of porphyry Cu±Mo±Au deposits[J].Reviews in Economic Geology,2001, 14:157-181. [35]Rui Zongyao, Hou Zengqian, Li Guangming, et al. Subduction, collision, deep fracture, adakite and porphyry copper deposits[J].Geology and Prospecting,2006, 42(1):1-6.[芮宗瑶,侯增谦,李光明,等.俯冲、碰撞、深断裂和埃达克岩与斑岩铜矿[J]. 地质与勘探, 2006, 42(1):1-6.] [36]Solomon M. Subduction, arc reversal, and the origin of porphyry copper-gold deposits in island arcs[J].Geology,1990, 18(7): 630-633. [37]Richards J P. Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit formation[J].Economic Geology,2003, 98(8): 1 515-1 533. [38]James D E, Sacks I S. Cenozoic formation of the Central Andes: A geophysical perspective[C]∥Skinner B J ed. Geology and Ore Deposits of the Central Andes. Specical Publication No.7, Society of Economic Geology, 1999, 7:1-25. [39]Sawkins F J. Sulfide ore deposits in relation to plate tectonics[J].Journal of Geology,1972, 80(4):377-397. [40]Burnham C W, Ohmoto H. Late-stage processes of felsic magmatism[J]. Mining Geology,1980, 8(Special Issue):1-11. [41]Chen Wenming. The relationship between the formation of the Cu-Mo deposits and evolution in China[J].Geoscience,1993, 15:19-30.[陈文明.中国Cu-Mo床形成与演化关系[J]. 现代地质, 1993, 15:19-30.] [42]Chen Wenming, Zhang Chengxin, Li Shuping,et al. Polygenetic mineralization of the Early Proterozoic Tong Kuangyru meta-porphyry copper deposit in the Zhongtiao Mountains, Shanxi province[J].Acta Geologica Sinica,1998,(2):154-168.[陈文明,张承信,李树屏,等.中条山铜矿峪早元古代变斑岩铜矿复合成矿作用[J]. 地质学报, 1998,(2):154-168.] [43]Chen Wenming. The origins of porphyry copper deposits[J]. Geoscience, 2002, 1:1-8.[陈文明.论斑岩铜矿的成因[J]. 现代地质, 2002, 1:1-8.] [44]Rui Zongyao, Zhang Hongtao, Chen Renyi, et al. An approach to some problems of porphyry copper deposits[J].Mineral Deposits,2006, 25(4):491-500.[芮宗瑶,张洪涛,陈仁义,等.斑岩铜矿研究中若干问题探讨[J]. 矿床地质, 2006, 25(4): 491-500.] [45]Oyargun R, Maryuey A, Lillo J, et al. Giant versus small porphyry copper deposits of Cenozoic age in northern Chile: Adakitic versus normal calc-alkaline magmatism[J].Mineralium Deposita, 2001, 36(8):794-798. [46]Zhang Qi,Wang Yan, Liu Hongtao, et al. On the space-time distribution and geodynamic environments of adakites in China annex: Controversies over differing opinions for adakites in China[J].Earth Science Frontiers,2003, 10(4):385-400.[张旗,王焰,刘红涛,等.中国埃达克岩的时空分布及其形成背景附:国内关于埃达克岩的争论[J]. 地学前缘, 2003, 10(4):385-400.] [47]Hou Zengqian, Mo Xuanxue, Gao Yongfeng, et al. Adakite, a possible host rock for porphyry copper deposits: Case studies of porphyry copper belts in Tibeten plateau and in northern Chile[J].Mineral Deposits, 2003, 22(1):1-12.[侯增谦,莫宣学,高永丰,等.埃达克岩: 斑岩铜矿的一种可能的重要母岩——以西藏和智利斑岩铜矿为例[J]. 矿床地质, 2003, 22(1):1-12.] [48]Hou Zengqian, Meng Xiangjin, Qu Xiaoming,et al. Copper ore potential of adakitic instrusives in Gangdese porphyry copper belt: Contrains from rock phase and deep melting process[J].Mineral Deposits, 2005, 24(2): 108-120.[侯增谦,孟祥金,曲晓明,等.西藏冈底斯斑岩铜矿带埃达克质斑岩含矿性:源岩相变及深部过程约束[J]. 矿床地质, 2005, 24(2):108-120.] [49]Zhang Yuquan, Xie Yingwen, Liang Huaying, et al. Petrogenetic series and ore-bearing porphyries of the Yulong copper ore belt in eastern Tibet[J].Geochimica,1998, 27(3):236-243.[张玉泉,谢应雯,梁华英,等.藏东玉龙铜矿含矿斑岩及成岩系列[J]. 地球化学, 1998, 27(3):236-243.] [50]Defant M J, Drummond M S. Derivation of some modern arc magmas by melting of young subducted lithosphere[J].Nature, 1990, 347:662-665. [51]Sajona F G, Maury R C, Bellon H, et al. Initiation of subduction and the generation of slab melts in western and eastern Mindanao, Philippines[J].Geology,1993, 21(11):1 007-1 010. [52]Peacock S M, Rusher T, Thompson A B. Partial melting of subducting oceanic crust[J]. Earth and Planetary Science Letters,1994, 121:224-227. [53]Martin H. Adakitic magmas:Modern analogues of Archaean granitoids[J].Lithos,1999, 46(3):411-429. [54]Yogodzinski G M, Lees J M, Churikova T G, et al. Geochemical evidence for the melting of subducting oceanic lithosphere at plate edges[J].Nature,2001, 409:500-504. [55]Xiao Bo, Qin Kezhang, Li Guangming, et al. S-rich, Highly-Oxidized Ore-bearing Magma in the Qulong Giant Porphyry-Type Cu-Mo Deposit in Southern Tibet—Evidence from Magmatogenic Anhydrite[J].Acta Geologica Sinica,2009, 83(12):1 860-1 869.[肖波, 秦克章, 李光明, 等. 西藏驱龙巨型斑岩Cu-Mo矿床的富S、高氧化性含矿岩浆——来自岩浆成因硬石膏的证据[J]. 地质学报, 2009, 83(12):1 860-1 869.] [56]Titley S R, Beane R E. Porphyry copper deposits[J].Economic Geology,1973, 68(6):799-815. [57]Titley S R ed. Advances in Geology of the Porphyry Copper Deposits of Southwestern North America[M]. Tueson: University Arizona Press, 1982. [58]Candela P A, Holland H D. A mass transfer model for copper and molybdenum in magmatic hydrothermal fluid system: The origin of porphyry-type ore deposits[J]. Economic Geology,1986, 81(1):1-19. [59]Roedder E. Fluid inclusion evidence for immiscibility in magmatic differentiation[J].Geochimica et Cosmochimica Atca, 1992, 156:3-20. [60]Lowenstern J B. Dissolved volatile concentrations in an ore-forming magma[J].Geology,1994, 22(10):893-896. [61]Ilton E S, Veblen D R. Copper inclusion in sheet-silicates from porphyry Copper deposits[J].Nature,1988, 334:516-518. [62]Campos E, Touret J L R, Nikogosian I, et al. Over heated,Cu-bearing magmas in the Zaldivar porphyry-Cu deposit, northern Chile: geodynamic consequences[J]. Tectonophysics, 2002, 345(1/4):229-251. [63]Ulrich T, Guenther D, Heinrich C A. Gold concentrations of magmatic brines and the metal budget of porphyry copper deposits[J].Nature,1999, 399:676-679. [64]Meng Xiangjin, Hou Zengqian, Li Zhenqing. Sulfur and lead isotope compositions of the Qulong Porphyry Copper Deposit, Tibet: Implications for the sources of plutons and metals in the deposit[J].Acta Geologica Sinica,2006, 80(2):554-560.[孟祥金,侯增谦,李振清.西藏驱龙斑岩铜矿S、Pb同位素组成: 对含矿斑岩与成矿物质来源的指示[J]. 地质学报, 2006, 80(4):554-560.] [65]Hattori K, Keith J D. Cont ribution of mafic melt to porphyry copper mineralization: Evidence from Mount Pinatubo, Philippines, and Bingham Canyon, Utah, USA[J]. Mineralium Deposits,2001, 36:799-806. [66]Li Jinxiang, Qin Kezhang, Li Guangming. Basic characteristics of gold-rich porphyry copper deposits and their ore sources and evolving processes of high oxidation magma and ore-forming fluid[J].Acta Petrologica Sinica,2006, 22(3): 678-688.[李金祥,秦克章,李光明.富金斑岩型铜矿床的基本特征、成矿物质来源与成矿高氧化岩浆—流体演化[J]. 岩石学报, 2006, 22(3):678-688.] [67]Hou Zengqian. Porphyry Cu-Mo-Au deposits: Some new insights and advances[J].Earth Science Frontiers,2004, 11(1):95-98.[侯增谦.斑岩Cu-Mo-Au矿床:新认识与新进展[J]. 地学前缘, 2004, 11(1):131-144.] [68]Sasaki A, Ishihara S. Sulfur isotopic composition of the magnetite-series and ilmenite-series granitoids in Japan[J].Contributions to Mineralogy and Petrology,1979, 68:107-115. [69]Ishihara S, Sasaki A. Sulfur isotopic ratios of the magnetite-series and ilmenite-series granitoids of the sierra Nevada batholith—A reeconnaissance study[J].Geology,1989, 17(9):788-791. [70]Rye R O, Luhr J F, Wasserman M D. Sulfur and oxygen isotopic systematics of the 1982 eruptions of El Chichon volcano,Chiapas, Mexioco[J].Journal of Vocanology and Geothermal Research,1984, 23(1):109-123. [71]Arancibia O N, Clark A H. Early magnetite-amphibole-plagioclase alteration-mineralization in the island copper porphyry copper-gold-molybdenum deposit,British Columbia[J].Economic Geology,1996, 91(2):402-438. [72]Hattori K H. High-sulfur magma,a product of fluid discharge from underlying mafic magma: Evidence from Mount Pinatubo,Philippines[J].Geology,1993, 21(12):1 083-1 086. [73]Sigurdsson H. Pre-eruption compositional grasients and mixing of andesite and dacite magma erupted from Nevado del Ruiz Vilcano, Colombia in 1985[J].Journal of Vocanology and Geothermal Research,1990, 41(1):127-151. [74]Pallister J S. A basalt trigger for the 1991 eruptions of Pinatubo volcano?[J].Nature, 1992, 356:426-428. [75]Carroll M R, Rutherford M J. Sulfide and sulfate saturation in hydrous silicate melts[C]∥ Proceedings of the 15th Lunar and Planetary Science Conference(part2), 1985, 90:601-612. [76]Gaetani G A, Grove L T. Partitioning of moderately siderophile elements among olivine, silicatemelt, and sulfidemelt:Constraints on core formation in the Earth and Mars[J].Geochimica et Cosmochimica Acta,1997, 61:1 829-1 842. [77]Mungall J E. Roasting the mantle: Slab melting and the genesis of major Au and Au-rich Cu deposits[J].Geology,2002, 30(10): 915-918. [78]Audetat A, Pettke T, Dolejs D. Magmatic anhydrite and calcite in the ore-forming quartz-monzodiorite magma at Santa Rita, New Mexico(USA): Genetic constraints on porphyry-Cu mineralization[J].Lithos,2004, 72(3): 147-161. [79]Sun W D, Arculus R J, Kamenetsky V S, et al. Release of gold-bearing fluids in convergent margin magmas prompted by magnetite crystallization[J].Nature,2004, 431:975-978. [80]Liang H Y, Campbell I H, Allen C, et al. Zircon Ce4+/Ce3+ ratios and ages for Yulong ore-bearing porphyries in eastern Tibet[J].Mineralium Deposita, 2006, 41(2):152-159. [81]Liang H Y, Sun W D, Su W C, et al. Porphyry copper-gold mineralization promoted by decreasing redox potential during magnetite alteration[J].Economic Geology, 2009, 104(4):587-596. [82]Davidson J P. Deciphering mantle and crustal signatures in subduction zone magmatism[J].Geophysical Monograph, 1996, 96:251-262. [83]de Hoog J C M, Mason P R D, van Bergen M J. Sulfur and chalcophile elements in subduction zones: Constraints from a laser ablation ICP-MS study of melt inclusions from Galunggung Volcano, Indonesia[J].Geochimica et Cosmochimica Acta,2001, 65(18):3 147-3 164. [84]Simon A C, Pettke T, Candela P A, et al. Copper partitioning in a melt-vapor-brine-magnetite-pyrrhotite assemblage[J].Geochimica et Cosmochimica Acta,2006, 70(22):5 583-5 600. [85]Zajacz Z, Halter W, Pettke T. Determination of fluid/melt partition coefficients by LA-ICP-MS analys is of co-existing fluid and silicate melt inclusions: Controls on element partitioning[J].Geochimica et Cosmochimica Acta,2008, 72(8):2 169-2 197. [86]Hamlyn P R, Keays R R, Cameron W E, et al. Precious metals in magnesian low-Ti lavas: Implicationsfor metallogenesis and sulfur saturation in primary magmas[J].Geochimica et Cosmochimica Acta,1985, 49(8):1 797-1 811. [87]Bornhorst T J, Rose W I. Partitioning of gold in young calc-alkaline volcanic rocks form Guatemala[J].Journal of Geology, 1986, 94(3):412-418. [88]Richards J P, McCulloch M T, Chappell B W, et al. Sources of metals in the Porgera gold deposit, Papua New Guinea: Evidence from alteration, isotope, and noble metal geochemistry[J].Geochimica et Cosmochimica Acta,1991, 55(2):565-580. [89]Richards J P. Alkalic-type epithermal gold deposits: A review[J].Mineralogical Association of Canada Short Course Series,1995, 23:367-400. [90]Jin Zhangdong, Li Fuchun. New progress of copper migration and precipitation mechanism during porphyry ore-forming process[J]. Mineral Resources and Geology,1998, 64(2):73-78.[金章东,李福春.斑岩型铜矿床成矿过程中铜的迁移与沉淀机制研究新进展[J]. 矿产与地质, 1998, 64(2): 73-78.] [91]Kalakay T J, John B E, Lageson D R. Fault-controlled pluton emplacement in the Sevier fold and thrust belt of southwest Montana,USA[J].Journal of Structural Geology, 2001, 23(6):1 151-1 165. [92]Richards J P. Cumulative factors in the generation of giant calc-alkaline porphyry Cu deposits[C]∥Porter T M ed. Super Porphyry Copper & Gold Deposits PGC Publishing,2005, 1:7-25. [93]Hill K C, Kendrick R D, Crowhurstand P V, et al. Copper-gold mineralization in New Guinea: Tectonics, lineaments, thermochronology and structure[J].Australian Journal of Earth Sciences,2002, 49(3):737-752. [94]Hou Zengqian, Pan Xiaofei, Yang Zhiming, et al. Porphyry Cu- (Mo-Au) deposits no related to oceanic-slab subduction: Examples from Chinese porphyry deposits in continental settings[J].Geoscience,2007, 21:332-351.[侯增谦,潘小菲,杨志明,等. 初论大陆环境斑岩铜矿[J]. 现代地质, 2007, 21(2):332-351.] [95]Vigneresse J L. Should felsic magmas be considered as tectonic objects, just like faults or folds?[J].Journal of Structural Geology,1999, 21(8):1 125-1 130. [96]Vigneresse J L. The role of discontinuous magma inputs in felsic magma and ore generation[J].Ore Geology Reviews, 2007, 30 (3/4):181-216. [97]Gillian G, Christoph A, Heinrich, et al. The Bingham Canyon porphyry Cu-Mo-Au deposit. II. Vein geometry and ore shell formation by Pressure-Driven rock extension[J].Economic Geology,2010, 105(1):69-90. [98]Hildreth W. Quaternary Magmatism in the Cascades: Geological Perspectives[M/OL].USGS Professional Paper,2007, 1 744.http:∥purl.access.gpo.gor/690/LPS97/05. [99]Hildreth W, Moorbath S. Crustal contributions to arc magmatism in the Andes of central Chile[J].Contributions to Mineralogy and Petrology,1988, 98(4):455-489. [100]Luo Zhaohua, Lu Xinxiang, Guo Shaofeng,et al. Metallogenic systems on the transmagmatic fluid theory[J].Acta Petrologica Sinica, 2008, 24(12): 2 669-2 678.[罗照华, 卢欣祥, 郭少丰, 等. 透岩浆流体成矿体系[J]. 岩石学报, 2008, 24(12): 2 669-2 678.] [101]Petford N, Clemens J D, Vigneresse J L. Application of information theory to the formation of granitic rocks[C]∥Bouchez J L, Hutton D, Stephens W E,eds.Granite: From Melt Segregation to Emplacement Fabrics. Dordrecht: Kluwer Academic Publishers,1997: 3-10. [102]Vigneresse J L. Granitic batholiths: From pervasive and continuous melting in the lower crust to discontinuous and spaced plutonism in the upper crust[J]. Transactions of the Royal Society of Edinburgh: Earth Sciences, 2008, 97(4):311-324. [103]Cline J, Bodnar R J. Can economic porphyry copper mineralization be generated by a typical calc-alkaline melt[J].Journal of Geophysical Research,1991, 96(B5):8 113-8 126. [104]Kilinc I A, Burnham C W. Partioning of chloride between a silicate melt and coexisting aqueous phase from 2 to 8 kilobars[J].Economic Geology, 1972, 67(2):231-235. [105]Candela P A, Holland H D. The partitioning of copper and molybdenum between silicate melts and aqueous fluids[J].Geochimica et Cosmochimica Acta, 1984, 48(2):373-380. [106]Hedenquist J W, Lowenstern J B. The role of magmas in the formation of hydrothermal of deposits[J].Nature, 1994, 370: 519-527. [107]Roedder E. Fluid inclusion studies on the porphyry-type ore deposits at Bingham, Utah, Butte, Montana, and Climax, Colorado[J].Economic Geology,1971, 66(1):98-118. [108]Nash J T. Fluid Inclusion Petrology Data from Porphyry Copper Deposits and Application to Exploration[M/OL].Washington: U.S. Geology Survey,1976, 907-D: 16. [109]Eastoe C J. A fluid inclusion study of the Panguna porphyry copper deposit, Bougainville, Papua New Guinea[J].Economic Geology,1978, 73(5):721-748. [110]Bodnar R J. Fluid-inclusion evidence for a magmatic source for metals in porphyry copper deposits[J]. Mineralogical Association of Canada Short Course Series, 1995, 23(1):139-152. [111]Giggenbach W F. Magma degassing and mineral deposition in hydrothermal systems along convergent plate boundaries[J].Economic Geology, 1992, 87(8):1 927-1 944. [112]Giggenbach W F. The origin and evolution of fluids in magmatic-hydrothermal systems[C]∥Barnes H L ed. Geochemistry of Hydrothermal Ore Deposits. John Wiley and Sons, Inc., 1997:739-796. [113]Heinrich C A, Gunther D, Audetat A, et al. Metal fractionation between magmatic brine and vapor, determined by microanalysis of fluid inclusions[J].Geology,1999, 27(9):755-758. [114]Heinrich C A. The physical and chemical evolution of low-salinity magmatic fluids at the porphyry to epithermal transition: A thermodynamic study[J].Mineralium Deposita,2005, 39(8):864-889. [115]Pokrovski G S, Roux J, Harrichoury J C. Fluid density control on vapor-liquid partitioning of metals in hydrothermal systems[J].Geology,2005, 33(8):657-660. [116]Pokrovski G S, Borisova A Y, Harrichoury J C. The effect of sulfur on vapour-liquid fractionation of metals in hydrothermal systems[J].Earth and Planetary Science Letters,2008, 266:345-362. [117]Pokrovski G S, Tagirov B R, Schott J, et al. A new view on gold speciation in sulfur-bearing hydrothermal fluids from in situ X-ray absorption spectroscopy and quantum-chemical modeling[J].Geochimica et Cosmochimica Acta,2009, 73(18):5 406-5 427. [118]Williams-Jones A E, Heinrich C A. Vapor transport of metals and the formation of magmatic-hydrothermal ore deposits[J].Economic Geology,2005, 100(7):1 287-1 312. [119]Simon A C, Pettke T, Candela P A, et al. The partitioning behavior of As and Au in S-free and S-bearing magmatic assemblages[J].Geochimica et Cosmochimica Acta,2007, 71(7):1 764-1 782. [120]Audetat A, Pettke T, Heinrich C A, et al. The composition of magmatic-hydrothermal fluids in barren and mineralized intrusions[J].Economic Geology,2008, 103(5):877-908. [121]Nagaseki H, Hayashi K. Experimental study of the behavior of copper and zinc in a boiling hydrothermal system[J].Geology,2008, 36(1):27-30. [122]Wilkinson J J, Wilkinson C C, Vry V H, et al. Ore fluid chemistry in super-giant porphyry copper deposits[M]∥Pacrim Congress, Gold Coast, Queensland, Extended Abstracts: Melbourne. Australasian Institute of Mining and Metallurgy, 2008:295-299. [123]Pudack C, Halter W E, Heinrich C A, et al. Evolution of magmatic vapor to gold-rich epithermal liquid: The porphyry to epithermal transition at Nevados de Famatina, northwest Argentina[J].Economic Geology,2009, 104(4):449-477. [124]Seo J H, Guillong M, Heinrich C A. The role of sulfur in the formation of magmatic-hydrothermal copper-gold deposits[J].Earth and Planetary Science Letters,2009, 282(1/4):323-328. [125]Zajacz Z, Halter W. Copper transport by high temperature, sulfur-rich magmatic vapor: Evidence from silicate melt and vapor inclusions in a basaltic andesite from the Villarica volcano(Chile)[J].Earth and Planetary Science Letters,2009, 282(1/4):115-121. [126]Lowenstern J B, Mahood G A, Rivers M L, et al. Evidence for extreme partitioning of Copper into a magmatic vapor phase[J].Science,1991, 252(5 011):1 405-1 409. [127]Williams-Jones A E, Migdisov A A, Archibald S M, et al. Vapor-transport of ore metals[C]∥Hellmann R, Wood S A, eds. Water-rock Interaction:A Tribute to David A Crerar. The Geochemical Society, Special Publication,2002:279-305. [128]Yang Zhiming, Hou Zengqian. Porphyry Cu deposits in collisional orogen setting: A preliminary genetic model[J].Mineral Deposits,2009, 28(5):515-538.[杨志明,侯增谦.初论碰撞造山环境斑岩铜矿成矿模型[J]. 矿床地质, 2009, 28(5):515-538.] [129]Fournier R O. Hydrothermal processes related to movement of fluid from plastic into brittle rock in the magmatic-epithermal environment[J].Economic Geology,1999, 94(8):1 193-1 211. [130]Roedder E. Fluid Inclusions: Reviews in Mineralogy[M].USA:Mineralogical Society of America, 1984, 12:644. [131]Simon A C, Pettke T, Candela P A, et al. Magnetite solubility and iron transport in magmatic-hydrothermal environments[J].Geochimica et Cosmochimica Acta,2004, 68(23):4 905-4 914. [132]Shinohara H, kazahaya K, Lowenstern J B. Volatile transport in a convecting magma column: Implications for porphyry Mo mineralization[J].Geology,1995, 23(12):1 091-1 094. [133]Du Qi. Geology of Duobaoshan Porphyry Copper Deposit[M]. Beijing:Geology Publishing House,1988:386.[杜琦. 多宝山斑岩铜矿床[M]. 北京:地质出版社, 1988:386.] [134]Rusk B G, Reed M H, Dilles J H, et al. Compositions of magmatic hydrothermal fluids determined by LA-ICP-MS of fluid inclusions from the porphyry copper-molybdenum deposit at Butte, MT[J].Chemical Geology,2004, 210(1/4):173-199. [135]Rusk B G, Reed M H, Dilles J H. Fluid inclusion evidence for magmatic-hydrothermal fluid evolution in the porphyry copper-molybdenum deposit at Butte, Montana[J].Economic Geology,2008, 103(2):307-334. [136]Rusk B G, Miller B J, Reed M H. Fluid inclusion evidence forthe formation of Main Stage polymetallic base-metal veins, Butte, Montana, USA[J].Arizona Geological Society Digest,2008, 22:573-581. [137]Redmond P B. Magmatic-hydrothermal Fluids and Copper-gold ore Formation at Bingham Canyon[D].Utha: Stanford University, 2002:228. [138]Redmond P B, Einaudi M T, Inan E E, et al. Copper deposition by fluid cooling in intrusion-centered systems: New insights from the Bingham porphyry ore deposit, Utah[J].Geology, 2004, 32(3):217-220. [139]Landtwing M R, Pettke T, Halter W E, et al. Copper deposition during quartz dissolution by cooling magmatic-hydrothermal fluids: The Bingham porphyry[J]. Earth and Planetary Science Letters,2005, 235(1/2):229-243. [140]Landtwing M R, Furrer C, Redmond P B, et al. The Bingham Canyon porphyry Cu-Mo-Au deposit.III. Zoned copper-gold ore deposition by magmatic vapor expansion[J].Economic Geology,2010, 105(1):91-118. [141]Hedenquist J W. The ascent of magmatic fluids: Discharge versus mineralization[J]. Mineralogical Association of Canada Short Course Series,1995, 23:263-289. [142]Hedenquist J W, Simmons S F, Giggenbach W F, et al. White Island, New Zealand, volcanic-hydrothermal system represents the geochemical environment of high-sulfidation Cu and Au ore deposition[J].Geology,1993, 21(8):731-734. [143]Hedenquist J W, Richards J P. The influence of geochemical techniques on the development of genetic models for porphyry copper deposits[J].Reviews in Economic Geology,1998, 93:235-256. [144]Heinrich C A, Driesner T, Stefansson A, et al. Magmatic vapor contraction and the transport of gold from the porphyry environment to epithermal ore deposits[J].Geology,2004, 32(9):761-764. [145]Khashgerel B, Rye R O, Kavalieris I, et al. The sericitic to advanced argillic transition: Stable isotope and mineralogical characteristics from the Hugo Dummett porphyry Cu-Au deposit, Oyu Tolgoi district,Mongolia[J].Economic Geology,2009, 104(8):1 087-1 110. [146]Lowell D J. How Kalamazoo was Found in Case Histories of Mineral Discoveries, Vol 3, Porphyry Copper, Molybdenum, and Gold Deposits, Volcanogenic Deposits and Deposits in Layered Rock[Z]. Society Mining Metallurgy and Exploration, Colorado V Hollister Editor, 1991:33. [147]Lowell D J. The discovery of the La Escondida Orebody[M]∥Hutchinson R V,Grauch R I, eds. Historical Perspectives of Genetic Concepts and Case Histories of Famous Discoveries. Economic Geology, 1991, Monograph 8:286-288. [148]Sillitoe R H, Gappe I M. Philippine Porphyry Copper Deposits: Geologic Settings and Characteristics[R]. CCOP Technical Report,1984. [149]Corbett G J, Leach T M. Southwest Pacific Rim Gold-copper Systems: Structure, Alteration, and Mineralization[M]. Littletion: Society of Economic Geologists Special Publication, 1998, 6: 240. [150]Eastoe C J. Sulfur isotope data and the nature of the hydrothermal systems at the Panguna and Frieda porphyry copper deposits, Papua New Guinea[J].Economic Geology,1983, 78(2):201-213. [151]Dilles J H. Petrology of the Yerington Batholith, Nevada: Evidence for evolution of porphyry copper ore fluids[J].Economic Geology,1987, 82(7):1 750-1 789. [152]Dilles J H, Einaudi M T. Wall-rock alteration and hydrothermal flow paths about the Ann-Mason porphyry copper deposit, Nevada—A 6 km vertical reconstruction[J]. Economic Geology,1992, 87(8):1 963-2 001. [153]Ulrich T, Heinrich C A. Geology and alteration geochemistry of the porphyry Cu-Au deposit at Bajo de la Alumbrera, Argentina[J].Economic Geology,2001, 96(8):1 719-1 742. [154]Ulrich T, Gunther D, Heinrich C A. The evolution of a porphyry Cu-Au deposit, based on LA-ICP-MS analysis of fluid inclusions: Bajo de la Alumbrera, Argentina[J].Economic Geology, 2001, 96(8):1 743-1 774. [155]Proffett J M. Geology of the Bajo de la Alumbrera porphyry copper-gold deposit, Argentina[J]. Economic Geology, 2003, 98(8):1 535-1 574. [156]Li Dapeng, Chen Yuelong, Jin Ye. Numerical simulation in subduction zone study[J].Adcances in Earth Science,2010, 25(10):1 082-1 090.[李大鹏, 陈岳龙, 靳野. 板块俯冲带研究中的数值实验[J].地球科学进展, 2010, 25(10):1 082-1 090.] [157]Harris A C, Golding S D. New evidence of magmatic-fluid-related phyllic alteration: Implications for the genesis of porphyry Cu deposits[J].Geology,2002, 30(4):335-338. |