地球科学进展 ›› 2003, Vol. 18 ›› Issue (5): 773 -782. doi: 10.11867/j.issn.1001-8166.2003.05.0773

研究论文 上一篇    下一篇

古代与现代火山成因块状硫化物矿床研究进展
安伟,曹志敏,郑建斌,刘激,陈敏   
  1. 中国海洋大学海洋地球科学学院,山东 青岛 266003
  • 收稿日期:2003-05-23 修回日期:2003-07-25 出版日期:2003-12-20
  • 通讯作者: 安伟 E-mail:aw9374@163.com
  • 基金资助:

    国家重点基础研究发展规划项目“地球圈层相互作用的深海过程和深海记录”(编号:G2000078500);国家高技术研究发展计划(863)课题“大洋固体矿产资源成矿环境及海底异常条件探测关键技术”(编号:2001AA6010202)资助.

THE DEVELOPMENTS OF STUDY ON ANCIENT AND MODERN VOLCANOGENIC MASSIVE SULFIDE DEPOSIT

An Wei,Cao Zhimin,Zheng Jianbin,Liu Ji ,Chen Min   

  1. Marine Geology College,Ocean university of China,Qingdao 266003,China
  • Received:2003-05-23 Revised:2003-07-25 Online:2003-12-20 Published:2003-10-01

    火山成因块状硫化物(VolcanogenicMas siveSulfide,简称VMS)矿床可见于前寒武纪至现代的各个地质时代。现代海底热液成矿作用为研究VMS矿床提供了一种新的途径,DSDP/ODP钻探资料揭示:①VMS矿床虽然可产生于不同环境,但均与张裂断陷有关。②成矿物质可能来源有 2种:一种是含矿火山岩系及下伏基底物质的淋滤;另一种是深部岩浆房挥发份的直接释放。③洋中脊海底热液循环呈双扩散对流模式。在有沉积物覆盖的洋中脊,热液循环更多地考虑流体与沉积物相互作用产生的效果。④从矿物组合的空间分布来看,热液硫化物堆积体上部以烟囱体为主,下部以块状硫化物为主,深部以网脉状硫化物为主,这在不同热液活动区似乎具有普遍性。
    VMS矿床的矿化模式反映的是一种热液成因,这种热液是深部(1~3 km)岩浆侵入所引起并通过海水在热穹隆之上循环产生的。VMS矿床的深入研究要求我们致力于发现新的矿产地,提高样品采集、分析技术,加强海底热液活动与构造、岩浆作用和环境演变的一体化研究。

Volcanogenic Massive Sulfide (VMS) deposits exist from pre-Cambrian to Quaternary.  Modern seafloor hydrothermal mineralization process provides a new way to study the VMS deposits. Studies of DSDP/ODP drilling data showed that: ①VMS deposits are related to rifting and subsidence. ②Ore-forming metals come from two sources, one is host volcano-sedimentary rocks and underlying basement, the other is liberated volatile components from deep magma chamber. ③Mid-ocean ridge seafloor hydrothermal circulation display double-diffusive convection pattern. In areas covered with sedimentary, more attention is paid to the effects produced by the reaction between the hydrothermal fluid and the sedimentary. ④From the point of spatial distribution of mineral assemblage of a hydrothermal sulfide congeries, the upper part is dominated with chimney, and the lower part with massive sulfides followed by stockwork sulfides in the deep part. This seems to be a common feature of various hydrothermal active areas. Mineralization pattern reflected the hydrothermal genesis of VMS deposits, in which the thermal fluid is generated by the circulation of seawater through heat dome, which in turn is a result of the intrusion of the deep (1~3 km) magma. Further studies of VMS deposits requires the discovery of new mineral occurrence, the improvement of sample collection, analyzing techniques, and the integration conception of seafloor hydrothermal activation, tectonic setting, magma processes and environment evolution.

中图分类号: 

[1] Frankin J M, Sangster D F, Lydon J W. Volcanic-associated massive sulfide deposits[J]. Economic Geology, 1981,(75th Anniv): 485-627.

[2] Rona P A, Scott S D. A special issue on sea-floor hydrothermal mineralization: New perspectives[J]. Economic Geology, 1993, 88: 1935-1976.

[3] Ohmoto H, Skinner B J. The Kuroko and related volcanogenic massive sulfide deposit[J]. Economic GeologyMonograph,1983,(5): 604.

[4] Lydon J W. Ore deposit models 14, Volcanogenic massive sulfide deposits[J]. Geoscience Canada, 1988, 83(1): 43-66.

[5] Hezig P M, Hanningtong M D. Polymetallic massive sulfides at the modern seafloor—A review[J]. Ore Geologica Review, 1995, 10: 95-115.

[6] Ohmoto H. Formation of volcanic-associated massive sulfide deposits: The Kuroko perspective[J]. Ore Geologica Review, 1996, 10: 135-177.

[7] Sun Shu. ODP and earth sciences in China[J]. Advances in Earth Sciences, 1995, 10(3): 213-214. [孙枢. 大洋钻探与中国地球科学[J]. 地球科学进展, 1995, 10(3): 213-214. ]

[8] Honnorez J, Von Herzen R P, et al. Hydrothermal mound and young ocean crust of the Galapagos: Preliminary Deep Sea Drilling results, Leg 70[J]. Geological Society of American Bulletin,1981, 92: 457-472.

[9] Alt J C, Kinoshita H, Stokking L B. Return to hole 504B[J]. JOIDES Journal, 1993, 19(3):9-14.

[10] Alt J C, Kinoshita H, et al. Proceeding of ODP, Initial Reports, 148: College Station, TX(Ocean Drilling Program)[C]. 1983.

[11] Bach W, Alt J C, Niu Y, et al. The chemical consequences of late-stagehydrothermal circulation alteration in an uplifted block of lower ocean crust at the SW Indian Ridge: Results from ODP Hole 735B (Leg 176)[J]. Geochemica et Cosmochimica Acta, 2001, 65: 3 267-3 287.

[12] Simoneit B R T. Lipid/bitumen maturation by hydrothermal activity in sediments of Middle alley, Leg 139. Proceedings of the ODP, Scientific Results[C].1994. 447-465.

[13] Zierenberg R A, Miller D J. Overview of Ocean Drilling Program Leg 169: Sedimented Ridges II[A]. In: Proceedings of ODP, Scientific Results, 169(Online)[C].2000.

[14] Becker K, Von Herzen R P. Pre-drilling observations of conductive heat flow at the TAG active mound using Alvin[A].In: Proceedings of ODP, Initial Reports, 158: College Station, TX (Ocean Drilling Program)[C]. 1996. 23-29.

[15] Humphris S E, Herzig, P M, Miller D J, et al. Proceedings of ODP, Initial Reports, 158: College Station, TX (Ocean Drilling Program)[C]. 1996.

[16] Mahoney J, Fitton G, Wallace P. Ocean Drilling Program, Leg 192, Shipboard Scientific Party[A]. In: ODP Leg 192, Basement Drilling of the Java Pateau[C]. 2000.

[17] Wu Shiying, Gao Aiguo, Wang Kuiyang, et al. World Seafloor Hydrothermal Sulfide Resources[M]. Beijing: China Ocean Press, 2000. 90-101. [吴世迎, 高爱国, 王揆洋, . 世界海底热液硫化物资源[M]. 北京: 海洋出版社, 2000. 90-101.]

[18] Sang-Mook Lee. Paleomagnetic and rock magnetic investigation of felsic hydrothermal vent ystem in back-arc setting: Preliminary results from ODP Leg 193 to eastern manus basin, papua new guinea[J]. Geophysical Research Abstracts, 2003, 5: 5-7.

[19] Cui Ruyong. Ore-forming conditions of oceanic large sulfide deposits[J]. Marine Geology Development, 2001, 17(2): 1-4. [崔汝勇. 大洋中大型硫化物矿床的形成条件[J]. 海洋地质动态, 2001, 17(2): 1-4.]

[20] Krvtsov A I. Ore-forming environment and condition of massive sulfide deposit on ancient and modern[J]. International Geology Review, 1987, 29(11/12):1 425-1 437.

[21] Sangster D F. Quantitative characteristics of volcanogenic massive sulphide deposits[J]. Bulletin of Canada Institute Mineral Metallurgy, 1980, 73:74-81.

[22] Hou Zengqian, Urade T. A comparative study on geochemistry of sulfide ores from the Koroko-type deposits on ancient and modern sea-floor[J]. Geochimica, 1996, 25(3): 228-241. [侯增谦, 浦边徹郎. 古代与现代海底黑矿型块状硫化物矿床矿石地球化学比较研究[J]. 地球化学, 1996, 25(3): 228-241. ]

[23] Hannington M D, Scott S D. Gold mineralization in volcanogenic massive sulfide: Implications of data from active hydrothermal vents on the modern seafloor[J]. Economic Geology(Monograph), 1996, 6: 491-507.

[24] Sawkins F J, Massive sulfide deposits in relation to geotectonics[J]. Geological Association of Canada, 1976, (Spec Pager14): 221-240.

[25] Stoltz A J, Large R R. Evaluation of the source control on precious metal grades in volcanic-hosted massive sulfide deposits from western Tasmania[J]. Economic Geology, 1992, 87: 720-738.

[26] Ye Qingtong, Fu XuJie, Zhang Xiaohua. Geological characteristics and genesis of the ashele copper-zinc massive sulfide deposit, XinJiang[J]. Mineral Deposits, 1997, 16(2): 100-106. [叶庆同, 傅旭杰, 张晓华. 阿舍勒铜锌块状硫化物矿床地质特征和成因[J]. 矿床地质, 1997, 16(2): 100-106. ]

[27] Stanton R L. Magmatic evolution and the ore type-lava type affiliations of volcanic exhalative ores[J]. Australasian Institule of Mining & Metallurgy Proceeding, 1990, 15: 101-107.

[28] Urabe T, Marumo K. A new model for Kuroko-type deposits of Japan[J]. Episodes, 1991, 14(3): 246-251.

[29] Large R R. Australian volcanic-hosted massive sulfide deposits: features, styles, and genetic models[J]. Economic Geology, 1992, 87: 741-510.

[30] Sawkins F J. Integrated tectonic-genetic model for volcanic-hosted massive sulfide deposits[J]. Geology, 1990, 18: 1 061-1 064.

[31] Sangster D F. Relative sulphur isotopic abundances of ancient seas and stratabound deposits[J]. Geological Association of Canada Proceedings, 1968, 17: 79-91.

[32] Ohmoto H. Stable isotope geochemistry of ore deposits[J]. Review of Minerology, 1983, 16: 491-560.

[33] Rye R O, Roberts R J, Snyder W S. Textural and stale isotope studies of the Big Mike cuperiferous volcanogenic massive sulfide deposits, Pershing County, Nevada[J]. Economic Geology, 1984, 79: 124-140.

[34] Zierenberg R, Shanks W C, Bischoof J. Massive sulfide deposit at 21°N EPR: chemical composition, stable isotopes, and phase equilibria[J]. Geological Society of America Bulletin, 1984, 95: 922-929.

[35] Stuart F M, Duckworth R, Turner G, et al. Helium and sulfur isotopes in sulfides from the Middle Valley, northern Juan de Fuca Ridge[J]. Proceedings of ODP Scientific Result, 1994, 139: 387-392.

[36] Zeng Zhigang, Jiang Fuqing, Qin Yunshan, et al. Sulfide isotopic composition of modern seafloor hydrothermal sediment and its geological significance[J]. Acta Oceanologica Sinica, 2001, 23(3): 48-56. [曾志刚, 蒋富清, 秦蕴珊, . 现代海底热液沉积物的硫同位素组成及其地质意义[J]. 海洋学报, 2001, 23(3): 48-56. ]

[37] Shanks W C III, Seyfried W E Jr. stable isotope studies of vent fluids and chimney minerals, Southern Juan de Fuca Ridge: Sodium metasomatism and seawater sulfate reduction[J]. Geophysical Research, 1987,92: 11 387-11 399.

[38] Stuart F M, Duckworth R, Turner G, et al. Helium and sulfur isotopes in sulfides from the Middle Valley, northern Juan de Fuca Ridge[J]. Proceeding of ODP Scientific Result, 1994, 139: 387-392.

[39] Knott R, Fouquet Y, Honnorez J, et al. Petrology of hydrothermal mineralization: A vertical section through the TAG mound[J]. Proceeding of ODP Scientific Result, 1998, 158: 5-26.

[40] Chiba H, Uchiyana N, Teagle D A H. Stable isotope study of anhydrite and sulfide minerals at the TAG hydrothermal mound, Mid-Atlantic Ridge, 26°N[J]. Proceeding of ODP Scientific Result, 1998, 158: 85-90.

[41] Gemmell J B, Sharpe R. Detailed sulfur-isotope investigation of the TAG hydrothermal mound and stockwork zone, 26°N, Mid-Atlantic Ridge [J]. Proceedings of ODP Scientific Result, 1998, 158: 71-84.

[42] Hannington M D, Galley A G, Herzig P M, et al. Comparison of the TAG mound and stockwork complex with cyprus-type massive sulfide deposits[J]. Proceeding of ODP Scientific Result, 1998, 158: 394-415.

[43] Lydon J W. Some observations on the mineralogical and chemical zonation patterns of volcanogenic sulphide deposits of Cyprus[J]. Paper Geological Survey of Canada, 1984,84-1A:611-616.

[44] Peter J M, Shanks W C III, Sulfur. Carbon and Oxygen isotope variations in submarine hydrothermal deposits of Guaymas Basin, Gulf of California[J]. Geochimica Cosmochimica et Acta, 1992, 56:2 025-2 040.

[45] Koski R A, Lonsdale P F, Shanks W C III, et al. Mineralogy and geochemistry of a sediment hosted hydrothermal sulfide deposit from the southern trough of Guaymas Basin, Gulf of California[J]. Joumal of Geophysical Research, 1985, 90: 6 695-6 707.

[46] Collinson T B. Hydrothermal mineralization and basalt alteration in stockwork zones of the ayda and Lasail massive sulfide deposits, Oman ophiolite[D]. Santa Barbara: University of California, 1986.

[47] Zhai Shikui, Chen Lirong, Zhang Haiqi. Magmatism and Subseafloor Hydrothermal Activity of the Okinawa Trough[J]. Beijing, China Ocean Press, 2001. 196-198. [翟世奎, 陈丽蓉, 张海启. 冲绳海槽的岩浆作用与海底热液活动. 北京: 海洋出版社,2001.196-198. ]

[48] Zierenberg R A, Koski R A, Morton J L. Genesis of massive sulfide deposits on a sediment-coverd spreading center, Escanaba Trough, Southern Gorda Ridge[J]. Economic Geology,1993, 88: 2 069-2 098.

[49] Kusakabe M, Mayeda S, Nakamara E. S, O and Sr isotope systematics of active vent materials from the Mariana backarc basin spreading axis at 18°N[J]. Earth and Planetary Science Letters, 1990,100: 275-282.

[50] Halbach P, Nakamura K, Washner M, et al. Probable modern analogue of Kuroko-type massive sulfide deposit in the Okinawa Trough back-arc basin[J]. Nature, 1989, 338:496-499.

[51] Lüders V, PraceJus B, Halbach P. Fluid inclusion and sulfur isotope studies in probable modern analogue Kuroko-type ores from the JADE hydrothermal field[J]. Chemical Geology, 2001, 173:45-58.

[52] Liu Xiaodong, Zhou Taofa. General geological and geochemical characteristics and ore-forming mechanism of the massive sulfide deposits[J]. Journal of Hefei University of Technology, 1999, 20(4): 42-47. [刘晓东, 周涛发. 块状硫化物矿床地质地球化学特征与形成机理[J]. 合肥工业大学学报, 1999, 20(4): 42-47. ]

[53] Franklin J M, Lydon J W, Sangster D F. Volcanic-associated massive sulfide deposits[J]. Economic Geology, 1981,(75th Anniv): 485-627.

[54] Cathles L M. A capless 350 flow zone model to explain megaplumes, salinity various, and high-temperature veins in Ridge Axial hydrothermal system[J]. Economic Geology, 1993,88: 1 977-1 988.

[55] Urabe T. Kuroko deposit modeling based on magmatic hydrothermal theory[J]. Mining Geology,1987,37: 159-175.

[56] Hedenquist J W, Lowenstern J B. The role of magma in the formation of hydrothermal deposits[J]. Nature, 1994, 370: 519-527.

[57] CO2-Hydrocarbon fluids of the Jade hydrothermal field in the Okinawa trough: Fluid inclusion evidence[J]. Science in China(D), 1998, 2: 142-148. [侯增谦, 张琦玲. 冲绳海槽现代活动热水区CO2-烃类流体: 流体包裹体证据[J]. 中国科学:D, 1998, 2: 142-148. ]

[58] Bottinga Y, Javoy M. MORB degassing: Evolution of CO2[J]. Earth and Planetary Science Letters, 1989. 95(3/4): 215-225.

[59] Bin Lin, Manuel O K. A noble gas technique for the identification of mantle and crustal materials and its application to the Kuroko deposits[J]. Geochemical Journal, 1994, 28(1): 47-69.

[60] Huston D L, Sie S H, Suter C F, et al. Trace elements in sulfide minerals from eastern Australian volcanic-hosted massive sulfide deposit[J]. Economic Geology,1995, 90: 1 167-1 196.

[61] Russell M J, Couples G D, Lewis H. SEDEX genesis and super-deep boreboles: Can hydrothermal pore pressures exit down to the brittle-ductile? [A]. In: Pasava, Kribek, Zak, eds. Mineral Deposits[C]. Balkema Rotterdam, 1985. 315-318.

[62] Bischoof J, Roserbauser R J. Salinity variations in submarine hydrothermal system by layered double-diffusive convection[J]. Journal Geology, 1989, 97: 613-623.

[63] Rachael H James, Mark D Rudnicki, Martin R Palmer. The alkali element and boron geochemistry of the Escanaba trough sediment-hosted hydrothermal system[J]. Earth and Planetary Science Letters, 1999,171: 157-169.

[64] Voggenreiter W H H, Mechie J. Low-angle detachment origin for the Red Sea Rift system? [J]. Tectonophysics, 1988, 150: 51-57.

[65] Skirrow R G, Franklin J M. Silification and metal leaching in semiconformable alteration beneath the Chisel lake massive sulfide deposit, Snow lake, Manitoba [J]. Economic Geology, 1994, 89: 31-50.

[66] Hannington M D, Jonasson I R, Herzig P M, et al. Physical and chemical processes of seafloor mineralization at mid-ocean ridge: American Geophysical Union [J]. Geophsical Monograph, 1995, 91: 115-157.

[67] Alt J C, Kinoshita H, Stokking L B, et al, eds. Scientific Results, Ocean Drilling Program, Leg 148: College Station, TX, Ocean Drilling Program[C]. 1996.

[68] Wheat G C. Hydrothermal circulation, Juan de Fuca ridge eastern flank: Factors controlling basement water composition[J]. Journal of Geophysical Research, 1994,99:3 067-3 080.

[69] Zhou Zuyi, Liu Chuanlian. From ODP to IODP[J]. Marine Geology Letters, 2002, 18(5): 10-12. [周祖翼,刘传联. ODPIODP[J]. 海洋地质动态, 2002, 18(5): 10-12. ]

阅读次数
全文


摘要