地球科学进展 ›› 2005, Vol. 20 ›› Issue (4): 449 -454. doi: 10.11867/j.issn.1001-8166.2005.04.0449

综述与评述 上一篇    下一篇

生物降解原油地球化学研究新进展
马安来 1,2,张水昌 3,张大江 3,金之钧 1   
  1. 1.中国石化石油勘探开发研究院,北京 100083;2.中国石油大学,北京 102249;3.中国石油勘探开发研究院,北京 100083
  • 收稿日期:2004-03-11 修回日期:2004-09-16 出版日期:2005-04-25
  • 通讯作者: 马安来
  • 基金资助:

    九五”国家重点科技攻关项目“塔里木盆地石油与天然气勘探(二期)”(编号:99-111-01-03);国家重点基础研究发展规划项目“中国叠合盆地油气形成富集与分布预测”(编号:G19990433)资助.

THE ADVANCES IN THE GEOCHEMISTRY OF THE BIODEGRADED OIL

MA Anlai 1,2;ZHANG Shuichang 3;ZHANG Dajiang 3;JIN Zhijun 1   

  1. 1. SinoPec Petroleum Exploration and Production Research Institute, Beijing 100083, China;2. University of Petroleum, Beijing 102249, China;3.The Research Institute of Petroleum Exploration and Development, PetroChina, Beijing 100083, China
  • Received:2004-03-11 Revised:2004-09-16 Online:2005-04-25 Published:2005-04-25

生物降解作用是原油的一种重要的蚀变作用,对原油的物性和经济价值有着负面的影响。全球石油大多遭受过生物降解。生物降解作用对常见生物标志物的影响得以较好的描述,综述了近年来高分子量正构烷烃、三环萜烷、25-降藿烷生物降解的新进展。目前对生物降解作用的细节、发生机理尚不十分清楚,讨论了原油喜氧和厌氧降解机制,认为厌氧作用可能起主导作用,降解速率很慢。温度是控制生物降解作用的重要因素,储层温度大于80℃不会发生生物降解作用。生物降解原油多为混源油,介绍了研究生物降解原油的多期成藏方法。沥青质不易生物降解,其热解产物及钌离子催化氧化产物在生物降解原油对比、油源对比中具有重要的作用;最后指出了今后的发展方向。

The biodegradation of crude oil in the reservoir is an important alteration process and has undesirable impact on the oil physical property and economic value. Most of the world oil has been biodegraded. The effects of biodegradation on the ordinary biomarkers have been well known. Some advances in the biodegradation of the uneasily biodegraded biomarkers in recent years, such as high-molecular-weight alkanes, tricyclic terpanes and 25-norhorpane, were reviewed. At present, the details and mechanism taking place during the biodegradation are still obscure. Both aerobic and anaerobic biodegradation mechanisms were discussed. It is proposed anaerobic biodegradation may be dominating and the biodegradation rate is very slow. The temperature was thought to be the main factor controlling the biodegradation. The biodegradation would cease at the reservoir temperature over 80℃. In most case, the biodegraded oils are mixing oils. The methods describing multiple hydrocarbon filling history of the biodegraded oil were introduced. Asphaltene of the biodegraded oil is unsusceptibility to biodegradation and its pyrolysate and Ruthenium-ion-catalyzed-oxidation production has important role in the oil-oil correlation and oil-source correlation for the biodegraded oil. Finally the trend of research on the biodegradation was proposed. 

中图分类号: 

[1] Niu Jiayu, Liu Shangqi, Men Cungui, et al. The Reservoir Geology of the Heavy Oils and Its Exploitation and Utilization[M].Beijing: Science Press, 2002.[牛嘉玉,刘尚奇,门存贵,等.稠油资源地质与开发利用[M].北京:科学出版社,2002.]
[2] Tissot B P, Welte D H. Petroleum Formation and Occurrence[M]. New York: Springer-Verlag, 1984.
[3] Peter K E, Moldowan J M. The Biomarker Guide: Interpreting Molecular Fossils in Petroleum and Ancient Sediments[M]. New Jersey: Prentice Hall Inc, 1993.
[4] Connan J. Biodegradation of crude oils in reservoir[A]. In: Brooks J, Welte D, eds. Advances in Petroleum Geochemistry (Volume 1)[C]. London: Academic Press, 1984. 299-335.
[5] Setti L, Lanzarini G, Pifferi P G, et al. Further research into aerobic degradation of n-alkanes in a heavy oil by a pure culture of a Pseudomonas spp[J]. Chemosphere, 1993, 26: 1 151.
[6] Wang Tieguan, Zhu Dan, Zhang Zhihuan, et al. High molecular weight (C35+) n-alkanes of Neogene heavily biodegraded oil in the Qianmiqiao region, North China[J]. Chinese Science Bulletin, 2002, 47(16): 1 402-1 407.
[7] Alberdi A, Moldowan J M, Peters K E, et al. Steroselective biodegradation of tricyclic terpanes in heavy oils from the Bolivar Coastal Fields, Venezuela[J]. Organic Geochemistry, 2001, 32(2): 181-191.
[8] Volkman J K, Alexander R, Kagi R I, et al. Demethylated hopanes in crude oils and their applications in petroleum geochemistry[J]. Geochimica et Cosmochimica Acta, 1983, 47: 785-794.
[9] Blanc P, Connan J. Origin and occurrence of 25-norhopane: A statically study[J].Organic Geochemistry, 1992, 18:813-828.
[10] Moldowan J M, McCaffrey M M. A novel microbial hydrocarbon degradation pathway revealed by hopane demethylation in a petroleum reservoir[J]. Geochimica et Cosmochimica Acta, 1995, 59(9): 1 891-1 894.
[11] Peters K E, Moldowan J M, McCaffrey M A, et al. Selective biodegradation of extended hopanes to 25-norhopanes in petroleum reservoirs.Insights from molecular mechanics[J]. Organic Geochemistry, 1996, 24(8~9): 765-783.
[12] Bost F D, Frontera-Suau R, McDonald T J, et al. Aerobic biodegradation of hopanes and norhopanes in Venezuelan crude oils[J]. Organic Geochemistry, 2001, 32(1): 105-114.
[13] Volkman J K, Alexander R, Kagi R I, et al. Biodegradation of aromatic hydrocarbons in crude oils from Barrow sub-basin of Western Australia[A]. In: Schenck P A, de Leeuw J W, Lijmbach G W M, eds. Advance in Organic Geochemistry 1983[C]. Organic Geochemistry,1984,6: 633-643.
[14] Williams J A, Bjoroy M, Dolcater D L, et al. Biodegradation in south Texas Eocence oils-effects on aromatics and biomarker[J]. Organic Geochemistry, 1985, 10(1~3): 451-461.
[15] Rubinstein I, Strausz O P, Spyckerelle C, et al. The origin of oil sand bitumens of Alberta[J]. Geochimica et Cosmochimica Acta, 1977, 41: 1 341-1 353.
[16] Bonnamy S, Oberlin A, Behar F. Geochemical study of a series of biodegraded oils: Microtexture and structure of their coked asphaltenes[J]. Organic Geochemistry, 1987, 11(1): 1-13.
[17] Chen Chuanping, Mei Bowen, Yi Shaojin, et al. Simulated experiment research on oil biodegradation in sand reservoir[J]. Acta Sedimentologica Sinica, 1997, 15(1): 135-140. [陈传平,梅博文,易绍金,等.砂岩储层中原油微生物降解的模拟实验研究[J].沉积学报,1997,15(1):135-140.]
[18] Peters K E, Fowler M G. Applications of petroleum geochemistry to exploration and reservoir management[J]. Organic Geochemistry, 2002, 33(1): 5-36.
[19] Larter S, Head I, Wihelms A. Implications of slow biodegradation rates in oilfields for crustal Biospheres[J]. Journal of Conference Abstract, 2000,5(2):619.
[20] Parkers J. Craking anaerobic bacterica[J]. Nature, 1999, 401(6 750): 217-218.
[21] Ruter P, Rabus R, Wilkes H, et al. Anaerobic oxidation of hydrocarbons in crude oil by new types of sulphate-reducing bacteria[J]. Nature, 1994, 372(6 505): 455-458.
[22] Horstad I, Larter S R, Mills N. A quantitative model of biological petroleum degradation within the Brent Group Reservoir in the Gullfakes Field, Norwegian North Sea[J]. Organic Geochemistry, 1992, 19(1~3): 107-228.
[23] Widdle F, Rabus R. Anaerobic biodegradation of saturated and aromatic hydrocarbons[J]. Current opinions in Biotechnology, 2001, 12: 259-276.
[24] Parkers J, Maxwell J. Some like it hot (and oily)[J]. Nature, 1993, 365(6 447): 694-695.
[25] Setter K O, Huber R, Blochl E,et al. Hyperthermophilic archaea are thriving in deep North Sea and Alsakan oil reservoirs[J]. Nature, 1993, 365(6 448): 743-745.
[26] Wilhelms A, Larter S R, Head I, et al. Biodegradation of oil in uplifted basins prevented by deep-burial sterilization[J]. Nature, 2001, 411(6 841): 1 034-1 037.
[27] Wang Tieguan, Wang Chunjiang, He Faqi, et al. Determination of double filling ratio of mixed source crude oils in the Ordovician oil reservoir, Tahe Oilfield[J]. Petroleum Geology & Experiment, 2004, 26(1): 74-79.[王铁冠,王春江,何发歧,等.塔河油田奥陶系油藏两期成藏原油充注比例测算方法[J].石油实验地质, 2004, 26(1): 74-79.]
[28] Grice K, Alexander R, Kagi R. Diamondoid hydrocarbon ratios as indicators of biodegradation in Australian crude oil[J]. Organic Geochemistry, 2000, 31(1): 67-73.
[29] Van Aarssen B G K, Bastow T P, Alexander R, et al. Distributions of methylated naphthalenes in crude oils: Indicators of maturity, biodegradation and mixing[J]. Organic Geochemistry, 1999, 30(10): 1 213-1 227.
[30] Rubinstein I, Spyskerelle C, Strausz P O. Pyrolysis of asphaltenes, a source of geochemical information[J]. Geochimica et Cosmochimica Acta, 1979, 43(1): 1-6.
[31] Rubinstein I, Strausz O P. Thermal treatment of the Athabasca oil sand bitumen and its component parts[J]. Geochimica et Cosmochimica Acta, 1979, 43(12): 1 887-1 893.
[32] Behar F,Pelet R, Roucache J. Geochemistry of asphaltenes[A]. In: Schenck P H, de Leeuw J W, Lijmbach G W M eds. Advacnce in Organic Geochemistry 1983[C]. Organic Geochemistry, 1984, 16(6): 587-595.
[33] Xiong Yongqiang, Geng Ansong. Carbon isotopic composition of individual compounds of asphaltene pyrolysates from biodegraded crude oils in Liaohe Basin[J].Geochimica,1998, 27(6): 532-536.[熊永强,耿安松.辽河油田生物降解原油沥青质热解产物中单体化合物碳同位素组成[J].地球化学,1998,27(6):532-536.]
[34] Xu Guanjun, Zhang Dajiang, Wang Peirong. Using the biomarkers bouded on the asphaltene for biodegradaed oil-source correlation[J]. Chinese Science Bulletin, 2003, 48(4): 400-404.[徐冠军,张大江,王培荣.用沥青质中生物标志化合物判识生物降解油的油源[J].科学通报,2003,48(4): 400-404.]

[1] 康曼玉,贾国东. 固氮蓝细菌的一种生物标志物——异形胞糖脂及其研究进展[J]. 地球科学进展, 2019, 34(9): 901-911.
[2] 潘根兴, 丁元君, 陈硕桐, 孙景玲, 冯潇, 张晨, 郑聚锋, 张旭辉, 程琨, 刘晓雨, 卞荣军, 李恋卿. 从土壤腐殖质分组到分子有机质组学认识土壤有机质本质[J]. 地球科学进展, 2019, 34(5): 451-470.
[3] 侯笛,张俊杰,邢磊,周阳. 长链烷基二醇在海洋环境重建中的研究进展[J]. 地球科学进展, 2019, 34(2): 140-147.
[4] 张海龙, 陶舒琴, 于蒙, 赵美训. 生物标志物单体放射性碳同位素分析技术的发展[J]. 地球科学进展, 2017, 32(11): 1193-1203.
[5] 袁子能,邢磊,张海龙,赵美训. 生物标志物稳定氢同位素研究进展及在海洋古环境重建中的应用[J]. 地球科学进展, 2012, 27(3): 276-283.
[6] 杨吉龙,韩冬梅,苏小四,肖国强,赵长荣,宋庆春,汪娜. 环境同位素特征对滨海岩溶地区海水入侵过程的指示意义[J]. 地球科学进展, 2012, 27(12): 1344-1352.
[7] 陈中红, Moldowan J M,刘昭茜. 东营凹陷生物降解稠油甾烷分子的选择蚀变[J]. 地球科学进展, 2012, 27(10): 1108-1114.
[8] 单慧媚,马腾,刘存富,刘玲,杨杰. 有机溴化物的溴同位素测试技术及其生物地球化学指示意义[J]. 地球科学进展, 2011, 26(8): 811-821.
[9] 赵军,姚鹏,于志刚. 海洋沉积物中色素生物标志物研究进展[J]. 地球科学进展, 2010, 25(9): 950-959.
[10] 丁玲,邢磊,赵美训. 生物标志物重建浮游植物生产力及群落结构研究进展[J]. 地球科学进展, 2010, 25(9): 981-989.
[11] 唐红峰,刘丛强. 变质流体作用的元素地球化学研究[J]. 地球科学进展, 2001, 16(4): 508-513.
[12] 吴 莹,张 经,唐运千. 中国海洋有机地球化学研究的若干进展[J]. 地球科学进展, 1999, 14(3): 256-261.
阅读次数
全文


摘要