Please wait a minute...
img img
高级检索
地球科学进展  2005, Vol. 20 Issue (4): 455-458    DOI: 10.11867/j.issn.1001-8166.2005.04.0455
综述与评述     
重力场中正高的理论与研究
张赤军1,边少锋2
1.中国科学院测量与地球物理研究所开放实验室,湖北 武汉 430077;2.海军工程大学四系,湖北 武汉 430033
THEORY AND RESEARCH OF ORTHOMTRIC HEIGHT IN GRAVITY FIELD SEA LEVEL
ZHANG Chijun1;BIAN Shaofeng2
1.Institute of Geodesy and Geophysics, Chinese Academy of Sciences, Wuhan 430077, China; 2.The Fourth Department University of Navy Engineering,Wuhan 430033,China
 全文: PDF(172 KB)  
摘要:

在大地测量学中的正高又称海拔高,它为地球重力场所制约,海拔高在当今数字地球中占有重要位置,它的功用已表现在经济、国防建设科学研究等诸多方面。尽管近50年来我国仍采用正常高系统,但随着时代的发展、研究的深入,如今推求正高的精度又与正常高的非常接近,况且它又符合我国幅员广大的高海拔山区的实际情况,因此用正高(系统)代替正常高(系统)的观念将会被人们所接受。这里对正高研究与发展的3个阶段进行了阐述,它们是:正高的定义与近似值,正常高的提出,正高的精确值的推求;还对高程(正高)基准面(geoid)上w0(大地水准面上的位值)的推求方法加以介绍。

关键词: 正高海拔正常高大地水准面w0    
Abstract:

Orthometric height i.e., Height above sea level (HASL), it is confined by the earth gravity and is an important geodetic concept, which has been widely applied to the field of economics, military defense, scientific research and son on. For nearly fifty years, concept of normal height has been adopted in China. However, thanks to the rapid development in geodesy and other computation technology, the HASL can be computed as accurately as the normal height. Particularly, the HASL is very fit to the case of wide and high multimountain areas of China. This ideal of orthometric height would be accepted by many people. This study will make a review of three historic periods of the development of HASL theory. The three periods are characterized by (1) definition and approximated evaluation of HASL; (2) proposition of HASL and (3) precise evaluation of HASL. Furthermore, this study also introduces the method of compute on the basic orthometric height level (geoid).

Key words: Height above sea level    Orthometric height    Normal height    Geoid.
收稿日期: 2004-05-20 出版日期: 2005-04-25
:  P22  
基金资助:

国家杰出青年自然科学基金项目“地球物理或大地测量”(编号:40125012)资助.

通讯作者: 张赤军   
作者简介: 张赤军(1933-),男,江苏省姜堰市人,研究员,主要从事大地测量与重力学研究. E-mail:iggzhangcj@sohu.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张赤军
边少锋

引用本文:

张赤军;边少锋. 重力场中正高的理论与研究[J]. 地球科学进展, 2005, 20(4): 455-458.

ZHANG Chijun;BIAN Shaofeng. THEORY AND RESEARCH OF ORTHOMTRIC HEIGHT IN GRAVITY FIELD SEA LEVEL. Advances in Earth Science, 2005, 20(4): 455-458.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2005.04.0455        http://www.adearth.ac.cn/CN/Y2005/V20/I4/455

[1] Compeiler Committee.Dictionary of Survery Mapping[M].Shanghai: Shanghai Lexicographical Publishing House ,1983.[《测绘辞典》编委会编.测绘辞典[M].上海:上海辞书出版社,1983.]
[2] Xu Houze ,Zhang Chijun: Earth shape and its gravity[J].Science Development,1983, 1:40-45.[许厚泽,张赤军.地球形状及外部重力场的研究[J].科学进展,1983,(1):40-45.]
[3] Li Jiancheng,Chen Junyong,Ning JinSheng,et al. Approach Theory of Earth Gravity and Quaigeoid in 2000[M]. Wuhan: Wuhan University Press,2003.[李建成,陈俊勇,宁津生,等.地球重力场的逼近理论与中国2000年似大地水准面[M].武汉大学出版社,2003.]
[4] Heiskanen W S. Moritz H. Physical geodesy[M]. San Francisco: Freeman and Company,1967.
[5] Molodensky M S, geremeyer V F. Yourkina M I. Methods for Study of the External Gravitational Field and Figure of the Earth[M]. Israel prog. Trans. Jerusalem,1962.
[6] Zhang Chiju: Determination of vertical gradient of gravity anomaly with topographic data[J].Chinese Science Bulietin, 1999,44(11):1 029-1 034.[张赤军.用地形数据确定重力异常垂直梯度[J].科学通报,1999,44(11):1 029-1 034.]
[7] Sjoberg L. On the quasigeoid to geoid separation[J]. Manuscripts of Geodesy,1995, 20: 182-192.
[8] Rapp R H. Use of potential coefficient models for geoid undulation determination using a spherical harmonic representation of the height anomaly/geoid undulation difference[J]. Journal of Geodesy,1997. 71(5),282-289.
[9] Zhang Chijun, Bian Shaofeng. Difference between geoid and quasi-geoid and its model verification[J].Journal of Chengda University of Technology,2002,29(1):105-109.[张赤军,边少锋. 似大地水准面与大地水准面之差及其模型显示[J].成都理工学院学报,2002,29(1):103-109.]
[10] Zhang Chijun. Two methods for determining the orthometric height with high accuracy[J].Geomatics and Information Science of Wichan University,2003,28(4):432-434.[张赤军. 推求正高的两种方法[J]. 武汉大学学报(信息科学版),2003,28(4):432-434.]
[11] Jiao Wenhai, Wei Ziqing, Ma Xin,et al. The origin vertical shift of national height datum 1985 with respect to the geoidal surface[J].Acta Geodaetica et Cartographica Sinica,2002,31(3):196-200.[焦文海,魏子卿,马欣,等.国家高程基准相对于大地水准面的垂直偏差[J].测绘学报,2002, 31(3): 196-200.]
[12] Grafrand E, Kromm F W, Schwarze V S,eds. Geodesy[M]. Berlin: Springer, 2003.
[13] Yeremev V F, Yourkina M I. Theory of Height in Earth's Gravity[M]. Nedra: Mossow, 1972.
[14] Bursa M, Bystrzycka K, Radej K, et al. Estimation of the accuracy of geopotential models[J]. Studio Geoph et Geod,1995, 39: 365-374.

[1] 王磊, 陈仁升, 宋耀选. 基于Γ函数的祁连山葫芦沟流域湿季小时降水统计特征[J]. 地球科学进展, 2016, 31(8): 840-848.
[2] 刘光;陈拓;安黎哲;王勋陵;冯虎元. 青藏高原北部植物叶片碳同位素组成特征的环境意义[J]. 地球科学进展, 2004, 19(5): 749-753.
[3] 张赤军. 全球垂直基准研究中的几点思考[J]. 地球科学进展, 2000, 15(1): 106-109.
[4] 傅容珊. 大地水准面异常地震层析和地幔热动力模型[J]. 地球科学进展, 1995, 10(5): 450-456.
[5] 王广运;王海瑛. 卫星测高研究应用新进展[J]. 地球科学进展, 1993, 8(6): 36-43.