地球科学进展 ›› 2005, Vol. 20 ›› Issue (4): 442 -448. doi: 10.11867/j.issn.1001-8166.2005.04.0442

综述与评述 上一篇    下一篇

岩浆绿帘石特征及其地质意义研究进展
张华锋 1,叶青培 2,翟明国 1   
  1. 1.中国科学院地质与地球物理所,北京 100029;2.中国地质博物馆,北京 100034
  • 收稿日期:2004-03-15 修回日期:2004-09-07 出版日期:2005-04-25
  • 通讯作者: 张华锋
  • 基金资助:

    国家自然科学基金重点项目“山东半岛—朝鲜半岛克拉通基底和造山带对比研究”(编号:40234050);中国科学院知识创新工程重大项目“华北东部盆山系统与战略资源预测”(编号:KZCX-07)资助

SUMMARY OF CHARACTERISTICS AND SIGNIFICANCE OF THE MAGMATIC EPIDOTE

ZHANG Huafeng 1;YE Qingpei 2;ZHAI Mingguo 1   

  1. 1.Institute of Geology and Geophysics,Chinese Academy of Sciences,Beijing 100029,China;2.Chinese Museum of Geology, Beijing 100034,China
  • Received:2004-03-15 Revised:2004-09-07 Online:2005-04-25 Published:2005-04-25

综述了国际上对岩浆绿帘石的研究成果,总结了岩浆绿帘石的特征及其在花岗质岩浆中的结晶行为,讨论了岩浆绿帘石的地质意义。岩浆绿帘石的稳定与岩浆成分、fH2O以及fO2关系密切。它通常作为中、高压近固相线结晶矿物,主要产于英云闪长岩、花岗闪长岩、花岗岩等钙碱性花岗质岩石中。该矿物在岩浆中的结晶可早可晚(相对于黑云母或角闪石),氧逸度的高低直接影响到它在岩浆中的最小稳定压力。作为早期结晶的矿物,绿帘石不能作为压力计来反映岩体侵位深度,因为在绿帘石晶出时,岩浆中液相体积在50%~80%,这样岩浆可能会有快速侵位的过程,但它的地质意义在于能够对岩浆上升速率做出估算。而晚期近固相线晶出的绿帘石时,能够作为压力计反映岩体最小侵位深度。据此可以应用于对地壳演化和隆升的研究。由于氧逸度对绿帘石的稳定有很大影响,因此在能够作为压力计时,首先需要确定岩浆氧逸度情况。通常磁铁矿型花岗岩最小侵位深度在3×108 Pa左右(10 km),而钛铁矿型为5×108 Pa以上(17~20 km)。

Recent advances and geological significance of magmatic epidote(MEp) are summaried in this article. MEp stability in magma is firmly correlated with temperature, pressure, fH2O and fO2. Crystallization sequence from magma of MEp depends on pressure but not fO2. while,fO2 can changes MEp minimum cystallization pressure from 5×108 Pa(fO2=NNO)to 3×108 Pa(fO2=HM). MEp which crystallized earlier than biotite or hornblende in the magma, can not be used as a barometer, but be useful in caculating the ascent speed of magma. Those MEp that occurred as subsolid mineral with or without resorption of earlier-formed hornblende, can be use as pressure indicator for intrusion. With respect to the influence of fO2, Granite can be subdivided into Magnetite and Ilmenite series. MEp that occurred in Magnetite series granite indicates the minimum pressure of 3kbar and 5kbar of Ilmenite series granite.

中图分类号: 

[1] Keyes C R. Epidote as a primary component of eruptive rocks[J]. Geological Society of Americal Bulletin,1893,4: 305-312.
[2] Zen E-An,Hammarstrom J M . Magmatic epidote and its petrologic significance[J]. Geology, 1984,12: 515-518.
[3] Liou J G.  Synthesis and stability relations of epidote, Ca2Al2FeSi3O12(OH)[J]. Journal of  Petrology, 1973,14: 381-413.
[4] Naney M T. Phase equilibria of rock-forming ferromagnesian silicates in granitic systems[J]. American Journal of Science, 1983,283: 992-1 033.
[5] Zen E-An. Implications of magmatic epidote-bearing plutons on crustal evolution in accreted terranes of Northwestern North America[J]. Geology,1985,13: 266-269.
[6] Zen E-An,Hammarstrom J M.  Comment on “Implications of magmatic epidote-bearing plutons on crustal evolution in the accreted terranes of northwestern North America” and “Magmatic epidote and its petrologic significance”[J].Geology, 1986,14: 188-189.
[7] Zen E-An,Hammarstrom J M. Plumbing the depth of plutons by magmatic epidote-hornblende association: A cautionary review and an example from round Valley pluton, western Idaho[J]. Geology Society of American Abstracts Programs, 1988,20:475-476.
[8] Moench R H.  Comment on “Implications of magmatic epidote-bearing plutons on crustal evolution in the accreted terranes of northwestern North America” and “Magmatic epidote and its petrologic significance”[J].Geology, 1986,14: 187-188.
[9] Tulloch A J. Comment on “Implicatons of magmatic epidote-bearing plutons on crustal evolution in the accreted terranes of northwestern North America” and “ Magmatic epidote and its petrologic significance”[J]. Geology, 1986,14: 186-187.
[10] Evans B W,Vance J A. Epidote phenocrysts in dacitic dikes, Boulder County, Colorado[J].Contributions to Mineralogy and Petrology, 1987,96: 178-185.
[11] Dawes R L,Evans B W. Mineralogy and geothermobarometry of magmatic epidote-bearing dikes, Front Range, Colorado[J].Geological Society of America Bulletin,1991,103 : 1 017-1 031.
[12] Vyhnal C R, McSween H Y Jr, Speer J A. Hornblende chemistry in southern Appalachian granitoids: Implications for aluminum hornblende thermobarometry and magmatic epidote stability[J]. American   Mineralogist, 1991,76: 176-188.
[13] Owen J V. Significance of epidote in orbicular diorite from the Grenville Front zone, eastern Labrador[J]. Mineralogical Magazine, 1991,55: 173-181.
[14] Farrow C E G, Barr S M.Petrology of high-Al-hornblende-and magmatic-epidote-bearing plutons in the southeastern Cape Breton Highlands, Nova Scotia[J]. Canadian Mineralogy, 1992,30: 377-392.
[15] Saavedra J , Toselli A J, Rossi de Toselli J N, et al. Role of tectonism and fractional crystallization in the origin of lower paleozoic epidote-bearing granitoids, northwestern Argentina[J]. Geology, 1987,15: 709-713.
[16] Sial A N. Epidote-bearing calc-alkalic granitoids in northeast Brazil[J]. Revista Brasileira de Geociencias, 1990,20(1~4):88-100.
[17] Chen Guangyuan, Sun Daisheng, Shao Yue. Typomorphic significance of accessory minerals of gold-hosting Kunyushan monzonitic granite in Jiaodong, China[J].Geoscience,1996,10(2):175-186.[陈光远, 孙岱生, 邵岳.  胶东昆嵛山二长花岗岩副矿物成因矿物学研究[J].现代地质,1996,10(2): 175-186.]
[18] Li Wuxian, Xu Xisheng, Zhou Xinmin. Epidote granite in the “Xingzi complex” of Lushan mountain: Dating and genesis[J].Geological Review,1998,44(2):143-148.[李武显,徐夕生,周新民. 庐山“星子杂岩”中绿帘石花岗岩的定年和成因[J].地质论评,1998,44(2):143-148.]
[19] Cerredo M E, Luchi M G L. Mamil Choique granitoids, southwestern North Patagonian Massif, Argentina: Magmatism and metamorphism associated with a polyphasic evolution[J]. Journal of South American Earth Sciences, 1998,11(5): 499-515.
[20] Ferreira V P, Sial A N, DE SÂ J E F. Geochemical and isotopic signatures of Proterozoic granitoids in terrains of the Borborema structural province, northeastern Brazil[J]. Journal of South American Earth Sciences, 1998,11(5): 439-455.
[21] Sial A N, Toselli A J, Saavedra J, et al. Emplacement, petrological and magnetic susceptibility characteristics of diverse magmatic epidote-bearing granitoid rocks in Brazil, Argentina and Chile[J]. Lithos, 1999,46: 367-392.
[22] Roberts M, Pin C, Clemens J D, et al. Petrogenesis of Mafic to Felsic Plutonic Rock Associations: The Calc-alkaline Queiärigut Complex, French Pyrenees[J]. Journal of  Petrology,2000,41(6): 809-844.
[23] Mortajv A, Ikenne M, Gasquet D, et al.Palaeoproterozoic granitoids from the Bas Draa and Tagragra d'Akka InLiers [western Anti-Atlas, Morocco: Part of the jigsaw puzzle concerning the West African Craton[J]. Journal of Africa Earth Sciences, 2000,31(314): 523-538.
[24] Brandon A D, Creaser R A, Chacko T. Constraints on rates of granitic magma transport from epidote dissolution kinetics[J]. Science, 1996,271 (29): 1 845-1 848.
[25] Johnston, Wyllie. Constraints on the origin of Archean trondhjemites based on phase relationships of Nûk gneiss with H2O at 15kbar[J]. Contributions to Mineralogy and Petrology,1988,100: 35-46.
[26] Van de Laan Wyllie. Constraints on Archean trondhjemite genesis from hydrous crystallization experiments on Nûk gneiss at 10×108~17×108 Pa[J]. Journal of Geology, 1992,100: 57-68.[27] Schmidt M W. Phase relations and compositions in tonalite as a function of pressure: An experimental study at 650℃[J]. American Journal of Science, 1993,293: 1 011-1 060.
[28] Singh J, Johannes W. Dehydration melting of tonalites.PartⅡ. Composition of melts and solids[J]. Contributions to Mineralogy and Petrology, 1996,125: 26-44.
[29] Schmidt M W, Thompson A. Epidote in calc-alkaline magmas: An experimental study of stability, phase relationships, and the role of epidote in magmatic evolution[J]. American Mineralogy,1996,81: 462-474.
[30] Vielzeuf D, Schmidt M W. Melting relations in hydrous systems revisited: Application to metapelites, metagreywackes and metabasalts[J]. Contributions to Mineralogy and Petrology, 2001,141: 251-267.
[31] Thompson A B, Ellis D J. CaO+MgO+SiO2+H2O to 35KB: amphibole, talc and zoisite dehydration and melting reactions in the silica-excess part of the system and their possible significance in subduction zones, amphibolite melting, and magma fractionation[J]. American Journal of Science,1994,294:1 229-1 289.
[32] Tulloch A J. Secondary Ca-Al silicates as low-grade alteration products of granitoid biotite[J]. Contriutions to Mineralogy and Petrology, 1979,69: 105-117.
[33] Keane S D, Morrison J. Distinguishing magmatic from subsolidus epidote: Laser probe oxygen isotope compositions[J]. Contributions to  Mineralogy and  Petrollogy,1997,126: 265-274.
[34] Ishihara S. The magnetite-series and ilmenite-series granitic rocks[J]. Mining Geology, 1977,27: 293-305.
[35] Ishihara S. The granitoid series and mineralization[J]. Economic Geology,1981,75th anniversary volume: 458-484.
[36] Wones D R. Significance of the assemblage titanite+magnetite+quartz in granitic rocks[J]. American Mineralogy,1989,74: 744-749.

[1] 刘方斌, 聂军胜, 郑德文, 庞建章. 青藏高原东南缘新生代剥露历史及驱动机制探讨:以临沧花岗岩地区为例[J]. 地球科学进展, 2021, 36(4): 421-441.
[2] 刘洋,王文龙,滕学建,郭硕,滕飞,何鹏,田健,段霄龙. 内蒙古狼山地区早二叠世晚期花岗闪长岩:地球化学、年代学、 Hf同位素特征及其地质意义[J]. 地球科学进展, 2019, 34(4): 366-381.
[3] 郑海飞;段体玉;孙樯;乔二伟. 一种潜在的地质压力计:流体包裹体子矿物的激光拉曼光谱测压法[J]. 地球科学进展, 2005, 20(7): 804-808.
[4] 杨坤光,刘强. 花岗岩构造与侵位机制研究进展[J]. 地球科学进展, 2002, 17(4): 546-550.
[5] 陈国能. 花岗岩成因与成矿理论研究进展——原地重熔说与元素地球化学场简介[J]. 地球科学进展, 1998, 13(2): 140-144.
[6] 徐启东. 国外陆壳岩石缺乏流体熔融实验和模拟的主要成果[J]. 地球科学进展, 1997, 12(2): 144-151.
[7] 胡瑞忠. 花岗岩型铀矿床成因讨论——以华南为例[J]. 地球科学进展, 1994, 9(2): 41-46.
[8] 张志强. 花岗岩体定位机制研究进展综述[J]. 地球科学进展, 1993, 8(2): 19-28.
[9] 马昌前. 岩浆动力学与花岗岩研究[J]. 地球科学进展, 1990, 5(6): 37-41.
阅读次数
全文


摘要