地球科学进展 ›› 1997, Vol. 12 ›› Issue (2): 144 -151. doi: 10.11867/j.issn.1001-8166.1997.02.0144

综述与评论 上一篇    下一篇

国外陆壳岩石缺乏流体熔融实验和模拟的主要成果
徐启东   
  1. 中国地质大学 武汉 430074
  • 收稿日期:1996-06-28 修回日期:1996-10-23 出版日期:1997-04-01
  • 通讯作者: 徐启东,男,1957年3月出生,副教授,主要从事区域地球化学、矿床学和流体地质学方面的研究。

FLUID-ABSENT MELTING EXPERIMENT AND MODELING OF CRUSTAL ROCKS:MAJOR RESULTS AND IMPLICATION FOR STUDY OF GRANITOIDS

XU Qidong   

  1. China University Of Geosciences,Wuhan 430074
  • Received:1996-06-28 Revised:1996-10-23 Online:1997-04-01 Published:1997-04-01

近20年来人们越来越认识到,陆壳岩石缺乏流体熔融(fluid-absent melting)是花岗岩类岩石形成的重要机制。近10年来国外有关花岗岩类的实验模拟大多集中于研究在大陆中下部地壳深度内,主要陆壳岩石类型发生缺乏流体熔融所涉及的熔融反应类型、反应形成的熔融数量及有利条件等问题。综述了实验模拟研究的主要成果和对花岗岩类研究提供的某些限制和意义。强调对具体地区花岗岩类的成因研究要充分考虑不同源岩缺乏流体熔融可能产生的熔体数量、区域
岩石圈物质和能量调整能否导致高热状态的限制等因素。

Fluid-absent melting of crustal rocks as an important mechanism of genesis of granitoids has been known for twenty years. During recent ten years experimental melting and modeling associated with granitoids mainly were focused on melting reactions, melt fraction produced and favourable conditions in fluid-absent melting of crustal rocks. This paper summarizes the major results from fluid-absent melting experiment and modeling and those results constrain on the genesis of granitoids. It is suggested that study of genesis of granitoids in a special area must consider the melt fraction produced by fluid-absent melting of different rocks, if high-heat state can be retained by mass and energy transport in the regional lithosphere, and considered that simple applications of general criteria of I-and S-type granitoids to identifying the relations between genetic classifications and source rocks is not suitable.

中图分类号: 

1 Conrad W K, Nicholls I A,Wall V J. Water-saturated and-undersaturated melting of metaluminous and peraluminous crustal compositions at 10 Kb: evidence for origin of silicic magma in the Tanpo Volcanic Zone, New Zealand, and other occurrences. J Petrol, 1988, 29: 765-803.
2 Clemens J D,Vielzeuf D. Constraints on melting and magma production in the crust. Earth Planet Sci Lett, 1987, 86:287-306.
3 Vielzeuf D, Clemens J D, Pin C, et al. Granites, granulites and crustal differentiation. In: Vielzeuf D,et al (eds). Granulites and crustal evolution. Kluwer: 1990. 59-85.
4 Brown M. The generation, segregation, ascent and emplacement of granite magma: the migmatite-to-crustally-derived granite connection in thickened orogens. Earth Sci Rev, 1994, 36: 83 -130.
5 Clemens J D. The granulite-granite connexion. In: Vielzeuf D, et al(eds). Granulites and evolution.Kluwer, 1990.25-36.
6 Rutter M J,Wyllie P J. Melting of vapor-absent tonalite at 10Kb to simulate dehydration-melting in the deep crust. Nature, 1988, 331: 159-160.
7 Skjerlie K P, Johnston A D. Vapor-absent melting at 10Kb of a biotite-and amphibole-bearing tonalite gneiss: implication for the generation of A-type granites. Geology, 1992, 20: 263-266.
8 Wickham S M. The segregation and emplacement of granitic magmas. J Geol Soc London, 1987, 144:281-297.
9 Huppert H E,Stephen R,Sparks J. The generation of granitic magmas by intrusion of basalts into continental crust. J Petrol, 1988, 29: 599-624.
10 Vielzeuf D,Holloway J R. Experimental determination of the fluid-absent melting reactions in the pelitic system: consequences for crustal differentiation. Contrib Mineral Petrol, 1988, 98: 257-276.
11 Le Breton N,Thompson A B. Fluid-absent (dehydration) melting of biotite in metapelites in the early stage of crust anatexis. Contrib Mineral Petrol, 1988, 99: 226-237.
12 Patino Douce A E, Johnson A D. Phase equilibria and melt productivity in the pelitic systems: implications for the origin of peraluminous granitoids and aluminous granites. Contrib Mineral Petrol,1991, 107: 202- 218 .
13 Vielzeuf D,Montel J M. Partial melting of metagreywackes. Part 1, fluid-absent experiments and phase relationships. Contrib Mineral Petrol, 1994, 117: 375-393.
14 Beard J S, Lofgren G E. Dehydration melting and water-saturated melting of basaltic and andesitic greenstones and amphibolites at 1, 3 and 6.9 Kb. J Petrol, 1991, 32: 365-401.
15 Rushmer T. Partial melting of two amphibolites: contrasting experimental results under fluid-absent conditions. Contrib Mineral Petrol, 1991, 107: 41-59.
16 Rapp R P, Watson E B, Miller C F. Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalites. Precambrian Res, 1991, 51: 1-25.
17 Wolf M B, Wyllie P J. Dehydration melting of amphibolite at 10 Kb: the effects of temperature and time. Contrib Mineral Petrol, 1994, 115: 369-383.
18 Skjerlie K P, Patino Douce A E, Johnson A D. Fluid absent melting of layered crustal protolith : implication for the generation of anatectic granites. Contrib Mineral Petrol, 1993, 114: 365-378.
19 Skjerlie K P, Patino Douce A E. Anatexis of interlayered amphibolite and pelite at 10 kb: effect of diffusion of major components on phase relation and melt fraction. Contrib Mineral Petrol, 1995,122: 62-78.
20 Beard J S, Abitz R J,Lofgren G E. Experimental melting of crust xenoliths from Kilbourne Hole,New Mexico and implications for the contamination and genesis of magmas. Contrib Mineral Petrol,1993, 115: 88-102.
21 Patino Douce A E,Humphreys E D,Johnson A D. Anatexis and metamorphism in tectonically thickened continental crust exemplified by the Sevier Hinterland, Western North American. Earth Planet Sci Lett, 1990, 97: 290-315.
22 Gray D R, Cull J P. Thermal regimes, anatexis, and orogenesis: relations in the Western Lachlan Fold Belt, Southeastern Australia. Tectonophysics, 1992, 214: 441-461.
23 Harris N B W,Inger S. Trace element modeling of pelite-derived granites. Contrib Mineral Petrol,1992, 110: 46-56.

[1] 杨雄, 祝意青, 申重阳, 赵云峰. 2019年甘肃夏河 MS 5.7地震前后重力场异常特征分析[J]. 地球科学进展, 2021, 36(5): 510-519.
[2] 刘玉虎,曹春辉,李瑞磊,朱建峰,徐文,黄兰,栾颖. 边界断裂时空差异演化对断陷盆地的控制作用——以松辽盆地南部伏龙泉断陷为例[J]. 地球科学进展, 2020, 35(1): 79-87.
[3] 黄飞鹏, 任俊杰, 吕延武, 赵俊香. 东昆仑断裂带秀沟段晚第四纪滑动速率研究[J]. 地球科学进展, 2018, 33(3): 321-332.
[4] 黄小平, 张景平, 江志坚. 人类活动引起的营养物质输入对海湾生态环境的影响机理与调控原理[J]. 地球科学进展, 2015, 30(9): 961-969.
[5] 韩雨, 牛漫兰, 朱光, 吴齐, 李秀财, 王婷. 郯庐断裂带肥东段早白垩世中期走滑运动的年代学证据[J]. 地球科学进展, 2015, 30(8): 922-939.
[6] 陈鹏, 施炜. 南秦岭造山带韧性剪切系中—晚侏罗世运动学分析与力学机制探讨[J]. 地球科学进展, 2015, 30(1): 69-77.
[7] 徐小波,屈春燕,单新建,马超,张桂芳,孟秀军. 基于PS-InSAR技术的断裂带地壳形变实验研究[J]. 地球科学进展, 2012, 27(4): 452-459.
[8] 罗胜元,何生,王浩. 断层内部结构及其对封闭性的影响[J]. 地球科学进展, 2012, 27(2): 154-164.
[9] 王洪聚,刘保华,李西双. 晚更新世以来渤海南部海域断裂活动性[J]. 地球科学进展, 2011, 26(5): 556-564.
[10] 屈春燕,闫丽莉,温少妍,单新建. 首都圈地区卫星热红外亮温变化特征研究[J]. 地球科学进展, 2011, 26(2): 202-211.
[11] 宋到福,何登发. 断层相的概念及应用[J]. 地球科学进展, 2010, 25(9): 907-914.
[12] 张心昱,孙晓敏,袁国富,朱治林,温学发,康新斋,徐丽君. 中国生态系统研究网络水体pH和矿化度监测数据初步分析[J]. 地球科学进展, 2009, 24(9): 1042-1050.
[13] 吴时国,孙运宝,孙启良,董冬冬,袁圣强,马玉波. 深水盆地中大型侵入砂岩的地震识别及其成因机制探讨[J]. 地球科学进展, 2008, 23(6): 562-569.
[14] 孙杰,贾建业,詹文欢,易顺民. 深圳断裂带构造活动性分析[J]. 地球科学进展, 2007, 22(3): 234-240.
[15] 屈春燕,单新建,马瑾. 地震活动性热红外异常提取方法研究[J]. 地球科学进展, 2006, 21(7): 699-705.
阅读次数
全文


摘要