地球科学进展 ›› 2012, Vol. 27 ›› Issue (2): 154 -164. doi: 10.11867/j.issn.1001-8166.2012.02.0154

综述与评述 上一篇    下一篇

断层内部结构及其对封闭性的影响
罗胜元 1,何生 1,王浩 2   
  1. 1.中国地质大学(武汉)构造与油气资源教育部重点实验室,湖北武汉430074;2.西部钻探测井公司准东石油测井分公司,新疆阜康831511
  • 收稿日期:2011-07-16 修回日期:2011-12-05 出版日期:2012-02-10
  • 通讯作者: 罗胜元(1986-),男,湖北武汉人,博士研究生,主要从事成油体系与成藏动力学研究. E-mail:loshyv@163.com
  • 基金资助:

    国家油气重大专项“渤海湾盆地精细勘探关键技术”(编号:2011ZX05006-002)资助.

Review on Fault Internal Structure and the Influence on Fault Sealing Ability

Luo Shengyuan 1, He Sheng 1, Wang Hao 2   

  1. 1.Key Laboratory of Tectonics and Petroleum Resource of Ministry of Education, China University of Geosciences, Wuhan430074,China;
    2.Zhundong Oil Well Logging Branch,Well Logging Company of CNPC Xibu Drilling Engineering Company Limited, Fukang831511, China
  • Received:2011-07-16 Revised:2011-12-05 Online:2012-02-10 Published:2012-02-10

先前的研究多考虑断层封堵和开启的2种极端状态,近来的研究认为,在多数情况下断层处于2种之间的状态,只有在静止期具有封闭能力的断层,才有可能对油气起封堵作用。分析断层对流体运移的影响,需要分析断层在演化过程中的内部结构特征。断层可以划分出破碎带、诱导裂缝带和围岩3部分,断层岩和伴生裂缝构成破碎带的主体部分。常见的断层岩包括断层角砾岩、断层泥和部分碎裂岩,它们充填在断层裂缝空间中,断层内部结构受断层形成时的构造应力性质、断层活动强度和围岩岩性因素的控制。从动态角度看,随着断距增加,断层活动伴随着裂缝的发育和岩石的破碎混杂,可用泥质源岩层厚度和断距的比值来划分不同的发育阶段。断层活动期为油气运移通道,在静止时表现出差异性的封闭,通常用断层渗透率和排替压力2个参数来定量评价断层的封闭程度。断层岩渗透率主要受断距、泥质含量、埋深等因素的控制;断层排替压力的预测方法有2种:一种是从断层岩成岩角度分析的“等效埋深法”,另一种是分析实测排替压力与主控地质因素的“拟合法”。通过简化的断层模型,建立了渗透率、排替压力与主控因素的预测关系。和储层类似,流体在断层中的运移遵循多孔介质的渗流特征。利用断层两侧的流体压力和油气柱高度并不能直接评价封闭性能,还必须考虑油气充注史和流体压力变化历史。

 Recent studies have transformed the old polarized view of faults as either leaks or seals into realistic notions of more complex fault-fluid flow behavior. Only the sealing fault in inactive period could barrier oil and gas migration. Fault structure and the stage of fault growth control the mechanics and fluid flow properties in the crust. Usually, the internal structure of a fault can be divided into host rock, induced fracture zone with main slip plane and fault damage zone which include fault rocks and associated crack. Fault rocks filling in crack space include breccia, fault gouge and part of calaclastic rocks. The development of fault architecture in a layered sandstone and shale sequence is distributed in a consistent pattern determined by three factors: ① the relative contributions of different faulting mechanisms to faults growth and slip; ② the intensities of fault activity; ③ the distribution of rock types. Considering the physical process responsible for fault development, fault throw increases during activity, accompanying with fracture formation and rock clastation and mixture. The stages of faults growth can be measured by ratio between shale source rock thickness and fault throw. In an active period, faults become the main channels for vertical hydrocarbon migration. In a static period, faults show variability and dynamic characteristics of sealing, which could be measured by permeability and displacement pressure. Fault rock permeability in a layered sandstone and shale sequence has a favorable correlation with fault throw, shale content and the burial depth. Two methods are used to predict displacement pressure in faulted belt: ① evaluating the diagenesis of fault rocks that has an equivalent effect as buried depth of sedimentary rocks; ② using the actual measured displacement pressure to match with key geological factors. Through the simplified fault model, we establish relationship between key geological factors and permeability and displacement pressure of fault rocks. Fluid migration in fault zone follows porosity seepage characteristics as it does in reservoir. Cross-fault pressure and petroleum column height can not be converted to seal capacities simply because charge history and sealing type influence sealing. 

中图分类号: 

[1]Lü Yanfang, Fu Guang, Zhang Yunfeng. Fault Sealing Analysis[M]. Beijing: Petroleum Industry Press, 2002.[吕延防,付广,张云峰. 断层封闭性研究[M]. 北京: 石油工业出版社,2002.]
[2]Watts N L. Theoretical aspects of cap-rock and fault seals for single and two phase hydro-carbon columns[J].Marine and Petroleum Geology,1987, 4(4): 274-307.
[3]Downey M W. Evaluating seals for hydrocarbon accumulation[J]. AAPG Bulletin, 1973, 68(11): 1 752-1 763.
[4]Yielding G,Freeman G,Needham B. Quantitative fault seal prediction[J]. AAPG Bulletin, 1997, 81(6): 897-917.
[5]Gibson R G. Fault-zone seals in siliciclastic strata of the Columbus Basin, Offshore Trinidad[J]. AAPG Bulletin, 1994, 78(9): 1 372-1 385.
[6]Bouvier J D, Kaars-Sijpesteijn C H, Kluesner D F, et al. Three-dimensional seismic interpretation and fault sealing investigation, Nun River Field, Nigeria [J]. AAPG Bulletin, 1989, 73(11): 1 397-1 414.
[7]Lindsay N G, Murphy F C, Walsh J J. et al. Outcrop studies of shale smear on fault surface[J]. International Association of Sedimentologists Special Publication, 1993, 15(1):113-123.
[8]Fisher Q J, Knipe R J. Fault Sealing Processes in Siliclastic Sentiments, in Faulting, Fault Sealing and Fluid Flow in Hydrocarbon Reservoirs [M]. London: Geological Special Publication, 1998.
[9]Doughty P T. Clay smear seals and fault sealing potential of an exhumed growth fault, Rio Grande Rift, New Mexico[J]. AAPG Bulletin, 2003, 87(3): 427-444.
[10]Fisher Q J, Harris S D, McAllister E, et al. Hydrocarbon flow across faults by Capillary Leakage revisited[J].Marine and Petroleum Geology,2001,18(2):251-257.
[11]Caine J S, Evans J P, Forster C B. Fault zone architecture and permeability structure[J]. Geology, 1996, 24(11): 1 025-1 028.
[12]Yehuda Benzion, Charles G S. Characterization of fault zone[J]. Pure and Applied Geophysics,2003, 160(3/4): 677-715.
[13]Gudmundsson A, Berg S, Lyslo K B, et al. Fracture networks and fluid transport in active fault zone[J]. Journal of Structure Geology,2001, 23(2/3): 343-353.
[14]Ramsey J G. Shear zone geometry: A review[J].Journal of Structural Geology, 1980, 2(1/2): 83-99.
[15]He Yongnian, Lin Chuanyong, Shi Lanbin. An Outline of Structural Petrology [M]. Beijing: Geological Publishing House, 1988:127-140.[何永年,林传勇,史兰斌. 构造岩石学基础 [M]. 北京:地质出版社,1988: 127-140.]
[16]Gartrell A, Bailey W R, Brincat M. A new model for assessing trap integrity and oil preservation risks associated with post rift fault reactivation in the Timor Sea[J]. AAPG Bulletin, 2006, 90(12): 1 921-1 944.
[17]Zhu Zhicheng. Structural Geology[M]. Wuhan:China University of Geosciences Press, 1999.[朱志澄. 构造地质学[M]. 武汉: 中国地质大学出版社, 1999.]
[18]Wu Hongling. Analysis on the mechanical properties of a tensile structure plane and its relationship to principal stresses[J]. Geological Review, 1999, 45(5):449-455. [武红岭. 张性结构面的力学性质与主应力关系解析[J]. 地质论评, 1999, 45(5): 449-455.]
[19]Ding Wenlong, Xu Changchun, Jiu Kai, et al. The research progress of shale fractures[J]. Advances in Earth Science,2011, 26(2): 135-144.[丁文龙,许长春,久凯,等. 泥页岩裂缝研究进展[J]. 地球科学进展, 2011, 26(2): 135-144.]
[20]Luo Qun, Jiang Zhenxue, Pang Xiongqi. Mechanism and Model of Fault Controlling Petroleum Accumulation [M]. Beijing: Petroleum Industry Press, 2007: 279-303. [罗群,姜振学,庞雄奇. 断裂控烃机理与模式 [M]. 北京: 石油工业出版社, 2007:279-303.]
[21]Fu Xiaofei ,Fang Deqing, Lü Yanfang,et al. Method of evaluating vertical sealing of faults in terms of the internal structure of fault zones[J].Earth Science, 2005, 30(3): 328-336.[付晓飞,方德庆,吕延防,等. 从断裂带内部结构出发评价断层垂向封闭性的方法[J]. 地球科学, 2005, 30(3): 328-336.]
[22]Wu Zhiping, Chen Wei, Xue Yan, et al. Structural characteristics of faulting lone and its ability in transporting and sealing oil and gas[J]. Acta Geological Sinica, 2010,84(4):570-578.[吴智平,陈伟,薛雁,等. 断裂带的结构特征及其对油气的输导和封堵性 [J]. 地质学报, 2010, 84(4): 570-578.]
[23]Aydin A, Johnson A M. Development of faults as zones of deformation bands and as slip surfaces in sandstone[J].Pure and Applied Geophysics, 1978, 11(6): 931-942.
[24]Antonellini M, Aydin A, Bridge D. Effect of faulting on fluid-flow in porous sandstones-petrophysical properties[J]. AAPG Bulletin, 1994, 78(3): 355-377.
[25]Childs C,Watterson J, Walsh J J. A model for the structure and development of fault zones[J]. Journal of the Geological Society, 1996, 153(1): 337-340.
[26]Davatzes N C, Aydin A. Distribution and Nature of Fault Architecture in a Layered Sandstone and Shale Sequence: An Example from the Moab Fault, Utah. In Faults, Fluid Flow & Petroleum Traps[M]. Canada: AAPG Memoir 85, 2005.
[27]Sibson R H, Moore Mc M, Rankin A H. Seismic pumping—A  hydrothermal fluid transport mechanism[J]. Journal of  Geology Society, 1975, 131(6): 653-660.
[28]Hooper. Fluid migration along growth faults in compacting sediments[J].Journal of Petroleum Geology,1991,4(2):161-180.
[29]Sperrvik S,Gillespie P A, Fisher Q J, et al. Empirical Estimation of Fault Rock Properties[C]Koestler A G, Hunsdale R. Hydrocarbon Seal Qualitification. Norwegian Petroleum Society Special Publication, 2002:109-125.
[30]Lü Yanfang, Sun Yonghe, Fu Xiaofei, et al. Physical experiment of gas migration along reverse fault[J].Chinese Journal of Geology,2005, 40(4): 464-475. [吕延防,孙永河,付晓飞. 逆断层中天然气运移特征的物理模拟[J]. 地质科学, 2005, 40(4): 464-475.]
[31]Manzocchi T, Walsh J J, Nell P, et al. Fault transmissibility multipliers for flow simulation models[J]. Petroleum Geoscience, 1999, 5(1): 53-63.
[32]Evans J P. Thickness displacement relationships for fault zones[J]. Journal of Structural Geology, 1990, 12(8): 1 061-1 065.
[33]Sorkhabi R B,Hasegawa S, Iwanaga S, et al. Sealing assessment of normal faults in clastic reservoirs: The role of geometry and shale smear parameters[J]. Journal of Japanese Association of Petroleum Technology, 2002, 67(6): 576-589.
[34]Hesthammer J, Bjørkum P A, Watts L. The effect of temperature on sealing capacity of faults in sandstone reservoirs: Examples from the Gullfaks and Gullfaks Sor Fields, North Sea[J]. AAPG Bulletin, 2002, 86(10): 1 733-1 751.
[35]Hipper S J. Microstructures and diagenesis in North Sea Fault zone: Implications for Fault-Seal potential and Fault-Migration rate[C]Sundram R C. Seals, Traps, and the Petroleum System. AAPG Memoir 67, 1997:103-131.
[36]Pittman E D. Relationship of porosity and permeability to various parameters derived from mercury injection capillary pressure curves for sandstone[J]. AAPG Bulletin, 1992, 76(2): 191-198.
[37]Lü Yanfang, Huang Jinsong, Fu Guang, et al. Quantitative study on fault sealing ability in sandstone and mudstone thin interbed[J].Acta Petrolei Sinica,2009, 30(6): 824-829.[吕延防,黄劲松,付广,等. 砂泥岩薄互层段中断层封闭性的定量研究 [J]. 石油学报, 2009, 30(6): 824-829.]
[38]Zhou Xingui. The study of fault closure by use of entry pressure and its application in North Tarim[J]. Journal of Geomechanics,1997, 3(2):47-53.[周新桂. 利用排驱压力研究断裂封闭性及其在塔里木盆地北部地区的应用 [J]. 地质力学学报, 1997, 3(2): 47-53.]
[39]Koledoye B, Aydin A, May A. A new process-based methodology for analysis of shale smear along normal faults in the Niger Delta[J]. AAPG Bulletin, 2003, 87(3): 445-463.
[40]Bretan P, Yielding G, Jones H. Using calibrated shale gouge ratio to estimate hydrocarbon column heights[J]. AAPG Bulletin,2003, 87(3): 397-413.
[41]Brown A. Capillary effects on fault-fill sealing[J]. AAPG Bulletin, 2003, 87(3): 381-395.
[42]Heum O R. A fluid dynamic classification of hydrocarbon entrapment[J].Petroleum Geoscience, 1996, 2(2): 145-158.
[43]Smith D A. Sealing and nonsealing faults in Lousiana Gulf Coast Salt Basin [J]. AAPG Bulletin,1980, 64(1): 145-172.
[44]Yang Weiran, Zhang Wenhuai. Tectonic fluids—A new research Doman [J]. Earth Science Frontiers, 1996,3(3):124-130.[杨巍然,张文淮. 构造流体——一个新的研究领域 [J]. 地学前缘, 1996, 3(3): 124-130.]
[45]Zhao Jun, Zheng Guodong, Fu Bihong. Current development of tectonic-geochemical studies of active fault zones[J]. Advances in Earth Science,2009, 24(10): 1 130-1 137.[赵军,郑国东,付碧宏. 活动断层的构造地球化学研究现状 [J]. 地球科学进展, 2009, 24(10): 1 130-1 137.]
[46]Zhou Linshuai, Zhang Weihai, Huang Feng, et al. Determination of shale content in fault filling material and evaluation of fault sealing[J].Fault-Block Oil & Gas Field,2010,17(2):173-176.[周林帅,张卫海,黄峰, 等. 断裂带充填物中泥质质量分数的确定及断层封闭性评价 [J]. 断块油气田, 2010, 17(2): 173-176.]
[47]Liu Jin, Song Guoqi, Hao Xuefeng, et al. Characteristics of fault cementation zone and its origin in Linpan Oil Pool of the Huimin Depression[J]. Earth Science,2011, 36(6): 1 119-1 124.[刘金,宋国奇,郝雪峰, 等. 惠民凹陷临盘油区断裂胶结带基本特征及形成机制[J]. 地球科学, 2011, 36(6): 1 119-1 124.]

[1] 陈科贵, 陈旭, 张家浩. 复合渗透率测井评价方法在砂砾岩稠油油藏的应用 *——以克拉玛依油田某区八道湾组为例[J]. 地球科学进展, 2015, 30(7): 773-779.
[2] 刘乐乐,张旭辉,鲁晓兵. 天然气水合物地层渗透率研究进展[J]. 地球科学进展, 2012, 27(7): 733-746.
[3] 樊光明 朱志澄. 断裂构造研究的进展和趋势[J]. 地球科学进展, 1992, 7(6): 25-.
阅读次数
全文


摘要