Please wait a minute...
img img
高级检索
地球科学进展  2012, Vol. 27 Issue (2): 147-153    DOI: 10.11867/j.issn.1001-8166.2012.02.0147
综述与评述     
极地冰下生物地球化学过程研究进展
马红梅,孙波,姜苏,安春雷,史贵涛,李院生
中国极地研究中心,国家海洋局极地科学重点实验室,上海200136
Advance in Polar Subglacial Biogeochemistry Process
Ma Hongmei, Sun Bo, Jiang Su, An Chunlei, Shi Guitao, Li Yuansheng
SOA Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai200136,China
 全文: PDF(2219 KB)  
摘要:

已有的研究结果表明:极地冰下存在生命活动的证据。生物地球化学过程以其独特的视角,从生物学和地球化学学科交叉的角度,对于诠释冰下环境微生物生存及其对全球气候的影响提供了一条新途径。目前对于冰下生命的研究多集中在温型冰川和多温型冰川,关于冷型冰川冰下环境的生物起源、生存条件、能源转化方式和生物体的空间分布特征及种属关系等研究均还处在起步阶段。在简要阐述冰下化学风化机理发展历程的基础上,对近年应用生物地球化学过程研究极地冰下环境的研究成果进行总结和分析。此外,针对该领域目前研究上的空白和热点,分别对利用生物地球化学过程研究冰下环境微生物生存和繁衍,冰下温室气体释放,重大古气候事件探索及星际生命探索等科学命题进行展望。

关键词: 极地冰下环境生物地球化学过程全球气候    
Abstract:

The present research shows that life exists in subglacial environment. Biogeochemistry process, by means of its unique view, which combines the biology with the geochemistry, provides a new way to explain the existence of microbe in subglacial environment and their impact on the global climate change. At present, the study of  the subglacial life mostly focuses on the temperature glaciers and polythermal glaciers, whereas on cold-based glaciers, the studies of  the origination of life, the living conditions, the energy transform, the distribution characteristics, as well as the characterization of microbial community, are all at the preparatory stage. Based on the elucidation of the development of chemical weathering mechanism, this paper reviewc the latest progress of research in the application of biogeochemistry to explore the subglacial environment. Additionally, Future studies regarding the microbial survival in subglacial environment, the release of greenhouse, paleoclimate mutation exploration, and life exploration in other planet are discussed and recommended.

Key words: Polar subglacial environment    Biogeochemistry process    Global climate
收稿日期: 2011-11-02 出版日期: 2012-02-10
:  P467  
基金资助:

国家海洋局青年海洋科学基金项目“Dome A冰芯中氧的非质量同位素分馏效应研究”(编号:2011523);国家自然科学基金青年科学基金项目“南极冰芯中硫同位素组成及其非质量同位素分馏效应研究”(编号:40806074);南北极环境综合考察专项项目“冰盖断面及格罗夫山综合考察与冰穹A深冰芯钻探”(编号:CHINARE2012-02-02)资助.

通讯作者: 马红梅(1976-),女,安徽霍山人,高级工程师,主要从事冰川化学与气候记录研究     E-mail: mahongmei@pric.gov.cn
作者简介: 马红梅(1976-),女,安徽霍山人,高级工程师,主要从事冰川化学与气候记录研究. E-mail:mahongmei@pric.gov.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

马红梅,孙波,姜苏,安春雷,史贵涛,李院生. 极地冰下生物地球化学过程研究进展[J]. 地球科学进展, 2012, 27(2): 147-153.

Ma Hongmei, Sun Bo, Jiang Su, An Chunlei, Shi Guitao, Li Yuansheng. Advance in Polar Subglacial Biogeochemistry Process. Advances in Earth Science, 2012, 27(2): 147-153.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2012.02.0147        http://www.adearth.ac.cn/CN/Y2012/V27/I2/147

[1]Sharp M J, Parkes J, Cragg B, et al. Widespread bacterial populations at glacier beds and their relationship to rock weathering and carbon cycling[J].Geology,1999,27(2): 107-110.
[2]Tranter M. Controls on the Chemical Composition of Alpine Glacial Meltwater[D]. Norwich: University of East Anglia, 1982.
[3]Tranter M, Brown G H, Raiswell R, et al. A conceptual model of solute acquisition by Alpine glacial meltwaters[J]. Journal of Glaciology, 1993, 39(133):573-581.
[4]Tranter M, Huybrechts P, Munhoven G, et al. Direct effect of ice sheets on terrestrial bicarbonate, sulphate and base cation fluxes during the last glacial cycle: Minimal impact on atmospheric CO2 concentrations[J]. Chemical Geology, 2002, 190:33-44.
[5]Skidmore M, Foght J, Sharp M J. Microbial life beneath a high Arctic glacier[J]. Applied and Environmental Microbiology, 2000, 66(8):3 214-3 220.
[6]Skidmore M, Anderson S P, Sharp M, et al.Comparison of microbial community compositions of two subglacial environments reveals a possible role for microbes in chemical weathering processes
[J]. Applied and Environmental Microbiology, 2005, 71(11):6 986-6 997.
[7]Mitchell A C, Brown G H. Modelling geochemical and biogeochemical reactions in subglacial environments[J]. Arctic, Antarctic, and Alpine Research, 2008,40(3): 531-547.
[8]Hallbeck L. Microbial Processes in Glaciers and Permafrost[R]. Microbial Analytics Sweden AB, 2009.
[9]Bottrell S H, Tranter M. Sulphide oxidation under partially anoxic conditions at the bed of the Haut Glacier d′Arolla, Switzerland[J].Hydrological Processes,2002,16(12): 2 363-2 368.
[10]Tranter M, Sharp M J, Lamb H R, et al. Geochemical weathering at the bed of Haut Glacier d′Arolla, Switzerland—A new model[J]. Hydrological Processes, 2002,16(5): 959-993. 
[11]Christner B C, Skidmore M L, Priscu J C, et al. Bacteria in subglacial environments[M]Margesin R ed. Psychrophiles: From Biodiversity to Biotechnology, 2008, 2:51-71.
[12]Anderson K K, Azuma N, Barnola J M, et al. High-resolution record of Northern Hemisphere climate extending into the last interglacial period[J].Nature, 2004, 431(7 005):47-51.
[13]Foght J, Aislabie J, Turner S, et al. Cultural bacteria in subglacial sediments and ice from two Southern Hemisphere glaciers[J]. Microbial Ecology,2004,47(4): 329-340, doi:10.1007/s00248-003-1036-5.
[14]Gaidos E, Laniol B, Thorsteinsson T, et al. A viable microbial community in a subglacial volcanic crater lake, Iceland[J].Astrobiology, 2004, 4(3): 327-334.
[15]Kivimaki A L. Presence and Activity of Microbial Populations in Glaciers and Their Impact on Weathering at Glacier Beds[D]. Bristol: University of Bristol, 2004.
[16]Christner B C, Mosely-Thompson E, Thompson L G, et al. Bacterial recovery from ancient glacial ice[J].Environmental Microbiology, 2003,5(5):433-436.
[17]Miteva V L, Sheridan P P, Brenchley J B. Phylogenetic and physiological diversity of microorganisms isolated from a deep Greenland ice-core[J].Applied and Environmental Microbiology, 2004, 70(1):202-213.
[18]Mikucki J A, Foreman C H, Sattler B, et al. Geomicrobiology of Blood Falls: An iron rich saline discharge at the terminus of Taylor Glacier, Antarctica[J]. Aquatic Geochemistry, 2004, 10(3/4):199-220.
[19]Christner B, Royston-Bishop G, Foreman C M, et al. Limnological conditions in Subglacial Lake Vostok, Antarctica[J].Limnology and Oceanography, 2006, 51(6):2 485-2 501.
[20]Karl D M, Bird D F, Bjrkman K, et al. Microorganisms in the accreted ice of Lake Vostok, Antarctica[J]. Science, 1999,286(5 447):2 144-2 147.
[21]Priscu J C, Adams E E, Lyons W B, et al. Geomicrobiology of subglacial Ice above Lake Vostok, Antarctica[J].Science,1999,286(5 447):2 141-2 144.
[22]Christner B C, Mosley-Thompson E, Thompson L G, et al. Isolation of bacteria and 16S rDNAs from Lake Vostok accretion ice[J].Environmental Microbiology, 2001,3(9):570-577.
[23]Skidmore M, Anderson S P, Sharp M, et al. Comparison of microbial community compositions of two subglacial environments reveals a possible role for microbes in chemical weathering Processes[J]. Applied and Environmental Microbiology, 2005, 71(11):6 986-6 997.
[24]Priscu J C, Christner B. Earth′s icy biosphere[M]Bull A T ed. Microbial Diversity and Prospecting.Wiley:  ASM Press, 2004: 130-145.
[25]Mikucki J A, Priscu J C. Bacterial diversity associated with Blood Falls: A subglacial outflow from the Taylor Glacier, Antarctica[J]. Applied and Environmental Microbiology, 2007, 73(12):4 029-4 039.
[26]Priscu J C, Tulaczyk S, Studinger M, et al. Antarctic subglacial water: Origin, evolution and ecology[M]Vincent W, Laybourn-Parry J, eds. Polar Lakes and Rivers. Oxford: Oxford University Press, 2008: 119-137.
[27]Lanoil B, Skidmore M, Priscu J C, et al. Bacteria beneath the West Antarctic Ice Sheet[J]. Environmental Microbiology, 2009,11(3): 609-615.
[28]Ma L, Catranis C, Starmer W T, et al. Revival and characterization of fungi from ancient polar ice[J]. Mycologist, 1999, 13(2): 70-73.
[29]Tung H C, Bramall N E, Vrdoljak G. Microorganisms metabolising on clay grains in 3-km-deep Greenland basal ice[J]. Astrobiology, 2006,6(1): 69-86.
[30]Boyd E S, Skidmore M, Mitchell A C, et al. Methanogenesis in subglacial sediments[J]. Environmental Microbiology Reports, 2010, 2(5): 685-692.
[31]Wadham J L, Bottrell S, Tranter M, et al. Stable isotope evidence for microbial sulphate reduction at the bed of a polythermal high Arctic glacier[J]. Earth and Planetary Science Letters, 2004, 219(3/4):341-355.
[32]Wynn P, Hodson A, Heaton T. Chemical and isotopic switching within the subglacial environment of a High Arctic glacier[J]. Biogeochemistry, 2006, 78(2): 173-193.
[33]Wadham J L, Tranter M, Tulaczyk S, et al. Subglacial methanogenesis: A potential climatic amplifier?[J].Global Biogeochemical Cycles, 2008, 22, GB2021, doi:10.1029/2007/GB002951.
[34]Mikucki J A, Pearson A, Johnston A D, et al. A contemporary microbially maintained subglacial ferrous “ocean”[J].Science,2009,324(5 925):397-400.
[35]Raiswell R, Tranter M, Benning L G, et al. Contributions from glacially derived sediment to the global iron(oxyhydroxide) cycle: Implications for iron delivery to the oceans[J]. Geochimica et Cosmochimica Acta, 2006, 70(11): 2 765-2 780.
[36]Raiswell R, Benning L G, Tranter M, et al. Bioavailable iron in the Southern Ocean: Significance of the iceberg conveyor belt
[J]. Geochemical Transactions,2008, 9:7, doi:10.1186/1467-4866-9-7.
[37]Raiswell R, Benning L G, Davidson L, et al. Schwertmannite in wet, acid and oxic microenvironments beneath polar and polythermal glaciers[J]. Geology, 2009, 37(5): 431-434.
[38]Föllmi K, Hosein R, Arn K, et al. Weathering and the mobility of phosphorus in the catchments of and forefields of the Rhone and Oberaar glaciers, central Switzerland: Implications for the global phosphorus cycle on interglacial-glacial timescales[J]. Geochimica et Cosmochimica Acta, 2009, 73(8):2 252-2 282.
[39]Bulat S A, Alekhina I A, Blot M, et al. DNA signature of thermophilic bacteria from the aged accretion ice of Lake Vostok, Antarctica: Implications for searching for life in extreme icy environments[J].International Journal of Astrobiology, 2004, 3(1):1-12.
[40]Wadham J L, Tranter M, Skidmore M, et al. Biogeochemical weathering under ice: Size matters[J]. Global Biogeochemical Cycles, 2010, 24, GB3025, doi:10.1029/2009GB003688.
[41]Ullman W J, Kirchmana D L, Welcha S A,et al. Laboratory evidence for microbially mediated silicate mineral dissolution in nature[J].Chemical Geology, 1996, 132(1/4):11-17.
[42]Welch S A, Ullman W J. The effect of microbial glucose metabolism on bytownite feldspar dissolution rates between 5 degrees and 35 degrees Celsius[J].Geochimica et Cosmochimica Acta,1999, 63(19/20):3 247-3 259.
[43]Tranter M, Skimore M, Wadham J L. Hydrological controls on microbial communities in subglacial environments[J]. Hydrological Processes, 2005, 19(4): 995-998.
[44]Hodson A J, Mumford P N, Kohler J, et al. The high Artic glacial ecosystem: New insights from nutrient budgets[J]. Biogeochemistry, 2005, 72(2): 233-256.
[45]Siegert M J, Hindmarsh R, Corr H, et al. Subglacial Lake Ellsworth: A candidate for in situ exploration in West Antarctica[J]. Geophysical Research Letters, 2004, 31(23): 3-6.
[46]Fricker H A, Poweu R, Rriscu J, eds. Chapter 12. Siple Coast Subglacial Aquatic Environments: The Whillans Ice Stream Subglacial Access Research Drilling (WISSARD) project[C].Geophysical Monograph Series,2011,192:199-219.
[47]Carr M H, Belton M J, Chapman C R, et al. Evidence for a subsurface ocean on Europa[J].Nature,1998, 391(6 665):363-365.

[1] 王世杰,李阳兵. 喀斯特石漠化研究存在的问题与发展趋势[J]. 地球科学进展, 2007, 22(6): 573-582.
[2] 詹滨秋. 海洋气候化学——化学海洋学研究的一个新领域[J]. 地球科学进展, 1995, 10(4): 402-404.