[1]Sharp M J, Parkes J, Cragg B, et al. Widespread bacterial populations at glacier beds and their relationship to rock weathering and carbon cycling[J].Geology,1999,27(2): 107-110. [2]Tranter M. Controls on the Chemical Composition of Alpine Glacial Meltwater[D]. Norwich: University of East Anglia, 1982. [3]Tranter M, Brown G H, Raiswell R, et al. A conceptual model of solute acquisition by Alpine glacial meltwaters[J]. Journal of Glaciology, 1993, 39(133):573-581. [4]Tranter M, Huybrechts P, Munhoven G, et al. Direct effect of ice sheets on terrestrial bicarbonate, sulphate and base cation fluxes during the last glacial cycle: Minimal impact on atmospheric CO2 concentrations[J]. Chemical Geology, 2002, 190:33-44. [5]Skidmore M, Foght J, Sharp M J. Microbial life beneath a high Arctic glacier[J]. Applied and Environmental Microbiology, 2000, 66(8):3 214-3 220. [6]Skidmore M, Anderson S P, Sharp M, et al.Comparison of microbial community compositions of two subglacial environments reveals a possible role for microbes in chemical weathering processes [J]. Applied and Environmental Microbiology, 2005, 71(11):6 986-6 997. [7]Mitchell A C, Brown G H. Modelling geochemical and biogeochemical reactions in subglacial environments[J]. Arctic, Antarctic, and Alpine Research, 2008,40(3): 531-547. [8]Hallbeck L. Microbial Processes in Glaciers and Permafrost[R]. Microbial Analytics Sweden AB, 2009. [9]Bottrell S H, Tranter M. Sulphide oxidation under partially anoxic conditions at the bed of the Haut Glacier d′Arolla, Switzerland[J].Hydrological Processes,2002,16(12): 2 363-2 368. [10]Tranter M, Sharp M J, Lamb H R, et al. Geochemical weathering at the bed of Haut Glacier d′Arolla, Switzerland—A new model[J]. Hydrological Processes, 2002,16(5): 959-993. [11]Christner B C, Skidmore M L, Priscu J C, et al. Bacteria in subglacial environments[M]∥Margesin R ed. Psychrophiles: From Biodiversity to Biotechnology, 2008, 2:51-71. [12]Anderson K K, Azuma N, Barnola J M, et al. High-resolution record of Northern Hemisphere climate extending into the last interglacial period[J].Nature, 2004, 431(7 005):47-51. [13]Foght J, Aislabie J, Turner S, et al. Cultural bacteria in subglacial sediments and ice from two Southern Hemisphere glaciers[J]. Microbial Ecology,2004,47(4): 329-340, doi:10.1007/s00248-003-1036-5. [14]Gaidos E, Laniol B, Thorsteinsson T, et al. A viable microbial community in a subglacial volcanic crater lake, Iceland[J].Astrobiology, 2004, 4(3): 327-334. [15]Kivimaki A L. Presence and Activity of Microbial Populations in Glaciers and Their Impact on Weathering at Glacier Beds[D]. Bristol: University of Bristol, 2004. [16]Christner B C, Mosely-Thompson E, Thompson L G, et al. Bacterial recovery from ancient glacial ice[J].Environmental Microbiology, 2003,5(5):433-436. [17]Miteva V L, Sheridan P P, Brenchley J B. Phylogenetic and physiological diversity of microorganisms isolated from a deep Greenland ice-core[J].Applied and Environmental Microbiology, 2004, 70(1):202-213. [18]Mikucki J A, Foreman C H, Sattler B, et al. Geomicrobiology of Blood Falls: An iron rich saline discharge at the terminus of Taylor Glacier, Antarctica[J]. Aquatic Geochemistry, 2004, 10(3/4):199-220. [19]Christner B, Royston-Bishop G, Foreman C M, et al. Limnological conditions in Subglacial Lake Vostok, Antarctica[J].Limnology and Oceanography, 2006, 51(6):2 485-2 501. [20]Karl D M, Bird D F, Bjrkman K, et al. Microorganisms in the accreted ice of Lake Vostok, Antarctica[J]. Science, 1999,286(5 447):2 144-2 147. [21]Priscu J C, Adams E E, Lyons W B, et al. Geomicrobiology of subglacial Ice above Lake Vostok, Antarctica[J].Science,1999,286(5 447):2 141-2 144. [22]Christner B C, Mosley-Thompson E, Thompson L G, et al. Isolation of bacteria and 16S rDNAs from Lake Vostok accretion ice[J].Environmental Microbiology, 2001,3(9):570-577. [23]Skidmore M, Anderson S P, Sharp M, et al. Comparison of microbial community compositions of two subglacial environments reveals a possible role for microbes in chemical weathering Processes[J]. Applied and Environmental Microbiology, 2005, 71(11):6 986-6 997. [24]Priscu J C, Christner B. Earth′s icy biosphere[M]∥Bull A T ed. Microbial Diversity and Prospecting.Wiley: ASM Press, 2004: 130-145. [25]Mikucki J A, Priscu J C. Bacterial diversity associated with Blood Falls: A subglacial outflow from the Taylor Glacier, Antarctica[J]. Applied and Environmental Microbiology, 2007, 73(12):4 029-4 039. [26]Priscu J C, Tulaczyk S, Studinger M, et al. Antarctic subglacial water: Origin, evolution and ecology[M]∥Vincent W, Laybourn-Parry J, eds. Polar Lakes and Rivers. Oxford: Oxford University Press, 2008: 119-137. [27]Lanoil B, Skidmore M, Priscu J C, et al. Bacteria beneath the West Antarctic Ice Sheet[J]. Environmental Microbiology, 2009,11(3): 609-615. [28]Ma L, Catranis C, Starmer W T, et al. Revival and characterization of fungi from ancient polar ice[J]. Mycologist, 1999, 13(2): 70-73. [29]Tung H C, Bramall N E, Vrdoljak G. Microorganisms metabolising on clay grains in 3-km-deep Greenland basal ice[J]. Astrobiology, 2006,6(1): 69-86. [30]Boyd E S, Skidmore M, Mitchell A C, et al. Methanogenesis in subglacial sediments[J]. Environmental Microbiology Reports, 2010, 2(5): 685-692. [31]Wadham J L, Bottrell S, Tranter M, et al. Stable isotope evidence for microbial sulphate reduction at the bed of a polythermal high Arctic glacier[J]. Earth and Planetary Science Letters, 2004, 219(3/4):341-355. [32]Wynn P, Hodson A, Heaton T. Chemical and isotopic switching within the subglacial environment of a High Arctic glacier[J]. Biogeochemistry, 2006, 78(2): 173-193. [33]Wadham J L, Tranter M, Tulaczyk S, et al. Subglacial methanogenesis: A potential climatic amplifier?[J].Global Biogeochemical Cycles, 2008, 22, GB2021, doi:10.1029/2007/GB002951. [34]Mikucki J A, Pearson A, Johnston A D, et al. A contemporary microbially maintained subglacial ferrous “ocean”[J].Science,2009,324(5 925):397-400. [35]Raiswell R, Tranter M, Benning L G, et al. Contributions from glacially derived sediment to the global iron(oxyhydroxide) cycle: Implications for iron delivery to the oceans[J]. Geochimica et Cosmochimica Acta, 2006, 70(11): 2 765-2 780. [36]Raiswell R, Benning L G, Tranter M, et al. Bioavailable iron in the Southern Ocean: Significance of the iceberg conveyor belt [J]. Geochemical Transactions,2008, 9:7, doi:10.1186/1467-4866-9-7. [37]Raiswell R, Benning L G, Davidson L, et al. Schwertmannite in wet, acid and oxic microenvironments beneath polar and polythermal glaciers[J]. Geology, 2009, 37(5): 431-434. [38]Föllmi K, Hosein R, Arn K, et al. Weathering and the mobility of phosphorus in the catchments of and forefields of the Rhone and Oberaar glaciers, central Switzerland: Implications for the global phosphorus cycle on interglacial-glacial timescales[J]. Geochimica et Cosmochimica Acta, 2009, 73(8):2 252-2 282. [39]Bulat S A, Alekhina I A, Blot M, et al. DNA signature of thermophilic bacteria from the aged accretion ice of Lake Vostok, Antarctica: Implications for searching for life in extreme icy environments[J].International Journal of Astrobiology, 2004, 3(1):1-12. [40]Wadham J L, Tranter M, Skidmore M, et al. Biogeochemical weathering under ice: Size matters[J]. Global Biogeochemical Cycles, 2010, 24, GB3025, doi:10.1029/2009GB003688. [41]Ullman W J, Kirchmana D L, Welcha S A,et al. Laboratory evidence for microbially mediated silicate mineral dissolution in nature[J].Chemical Geology, 1996, 132(1/4):11-17. [42]Welch S A, Ullman W J. The effect of microbial glucose metabolism on bytownite feldspar dissolution rates between 5 degrees and 35 degrees Celsius[J].Geochimica et Cosmochimica Acta,1999, 63(19/20):3 247-3 259. [43]Tranter M, Skimore M, Wadham J L. Hydrological controls on microbial communities in subglacial environments[J]. Hydrological Processes, 2005, 19(4): 995-998. [44]Hodson A J, Mumford P N, Kohler J, et al. The high Artic glacial ecosystem: New insights from nutrient budgets[J]. Biogeochemistry, 2005, 72(2): 233-256. [45]Siegert M J, Hindmarsh R, Corr H, et al. Subglacial Lake Ellsworth: A candidate for in situ exploration in West Antarctica[J]. Geophysical Research Letters, 2004, 31(23): 3-6. [46]Fricker H A, Poweu R, Rriscu J, eds. Chapter 12. Siple Coast Subglacial Aquatic Environments: The Whillans Ice Stream Subglacial Access Research Drilling (WISSARD) project[C].Geophysical Monograph Series,2011,192:199-219. [47]Carr M H, Belton M J, Chapman C R, et al. Evidence for a subsurface ocean on Europa[J].Nature,1998, 391(6 665):363-365. |