地球科学进展 ›› 2001, Vol. 16 ›› Issue (4): 501 -507. doi: 10.11867/j.issn.1001-8166.2001.04.0501

综述与评述 上一篇    下一篇

岩浆(型)碳酸岩研究进展
秦朝建,裘愉卓   
  1. 中国科学院地球化学研究所矿床地球化学开放研究实验室,贵州 贵阳 550002
  • 收稿日期:2000-08-17 修回日期:2001-01-20 出版日期:2001-08-01
  • 通讯作者: 秦朝建(1974-),男,山东郯城人,硕士生,主要从事矿床地球化学研究. E-mail:cjqin@fm365.com
  • 基金资助:

    国家攀登计划预选项目“Pb、Zn大规模爆发性成矿”(编号:95-预-25)资助.

RECENT PROGRESS IN CARBONATITIE RESEARCH

QIN Chaojian,QIU Yuzhuo   

  1. Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry,CAS, Guiyang 550002, China
  • Received:2000-08-17 Revised:2001-01-20 Online:2001-08-01 Published:2001-08-01

主要从岩石学、矿物学、岩石分类、C、O、Sr同位素、碳酸岩与矿化的关系等各方面对(碱性)碳酸岩的研究进行了较为全面的总结,并结合近20年来实验岩石学、流体包裹体研究、CO2-H2O-NaCl流体体系的性质的研究,对碳酸岩岩浆的来源及成因、岩浆—热液的演化进行了分析和探讨。碳酸岩形成至少经历了三个阶段,即岩浆阶段、岩浆期后阶段(气相碳酸岩/岩浆热液阶段)、交代碳酸岩阶段。而作为与碳酸岩在空间和成因上有密切联系的基性、超基性岩、碱性岩杂岩体,则经历了碳酸岩成岩阶段以前的岩浆不混熔作用、结晶分异作用、岩浆结晶作用以及碳酸岩形成之后的围岩蚀变(霓长岩化)作用。

On the basis of mineralogy, petrology, carbon, oxygen and strontium isotopes and the relationship between carbonatite and mineralizations, the originand features of carbonatite is summarized. The carbonatites mainly occurred in the rift zones of cratons and within plates. They are often associated with mafic, ultramafic and alkaline rocks as a ring complex. The carbonatites might be accompanied by various mineralizations of Nb, Ta, P, REE, F, Ba and etc.Carbon and oxygen isotopic studies show that most of carbonatites are derived from the mantle, and they are in agreement to the associated maficultramafic rocks in C and O isotopic features. The initial Sr ratios of carbonatites are similar to that of mantle, except for some due to the crustal contamination. In combination with experimental petrology, fluid inclusions and the property of CO2-H2O-NaCl fluid system, the carbonatitic magma is inferred being generated from the mantle except for those of remelting type. The CO2 and H2O play an important role in the generation and formation of carbonatitic magma during metasomatism and partial melting in the mantle. The investigation on melt/fluid inclusions of carbonatites revealed a whole evolutional order from magmatic to hydrothermal stages. Experimental studies confirmed the evolution series from early magmatic system typical with K, Na, Ca and Mg to the hydrothermal system with alkaline ions such as Na and K. The fenitization of wall rocks occurred in later hydrothermal stage. The formation of carbonatites includes at least three stages: the magmatic crystallization stage, the post-magmatic (gaseous carbonatitic) stage, and the
 metasomatic carbonatitic stage. And the mafic, ultramafic and alkaline rocks, closely related to carbonatite in space and origin, are suffered the immiscible phase segregation, the differentiation of magma, the crystallization and the fenitization. 

中图分类号: 

[1] Carmichael L S E, Turner F J, Verhoogen J,等著.火成岩石学[M].丛柏林,等译.北京:地质出版社,1982.351-355.
[2]  Sun Nai, Peng Yaming . Igneous Petrology[M]. Beijing: Geological Publishing House. 1985,181-1186. [孙鼐, 彭亚明 主编. 火成岩石学[M]. 北京: 地质出版社, 1985. 181-186.]
[3] Kurszlaukis A S, Franz L, Ntry G P. The Blue Hill intrusive complex in Southern Namibia relationship between carbonatite and monticellite picrites[J]. Chemical Geology, 1999,160:1-18.
[4] Bai Ge, Yuan Zhongxin,Wu Chengyu, et al. Demonstration on the geological features and genesis of the Bayan Obo ore deposit[M]. Beijing: Geological Publishing House. 1996,92.[白鸽,袁忠信,吴澄宇,等.白云鄂博矿床地质特征和成因论证[M]. 北京:地质出版社, 1996. 92.]
[5] Liu Yan, Zhao Shanren, Sun Shihua. Reseach status of igneous carbonatites[A]. In: Oyang Ziyuan (Chief Editor). Studies and prospects on petrology, mineralogy and geochemistry at the transition of centuries[C]. Beijing: Nuclear Publishing House. 1998, 131-135.[刘焰,赵善仁,孙世华.火成碳酸岩研究现状
[A].见:欧阳自远 主编.世纪之交岩石学矿物学地球化学的研究与展望[C].北京:原子能出版社,1998.131-135.]
[6]  Institute of Geochemistry, Chinese academy of Sciences. Geochemistry of Bayan Obo ore deposit [M]. Beijing: Science Press. 1988, 232-285. [中国科学院地球化学研究所.白云鄂博矿床地球化学[M].北京:科学出版社,1988.232-285.]
[7] Bell K, Keller J. Carbonatite volcanism: Oldoinyo Lengai and the Petrogenesis of Matrocarbonatites[M]. Berlin, Heidelberg, New York: Springer, 1995.
[8] Le Bas M J. Diversification of carbonatite[A]. In: Bell K,ed. Carbonatites[C]. London: Unwin Hyman, 1989.428-447.
[9] Ray J S, Ramesh R, Pande K. Carbon isotopes in Kerguelen plume-drived carbonatites: evidence for recycled inorganic carbon[J]. Earth Planet Sci Lett, 1999, 170: 205-214.
[10] Nykanen J, Laajoki K, Karhu J. Geology and geochemistry of the early Proterozoic Kortejarvi and Laivajoki carbonatite, Central Fennos candian shield, Finland[J]. Bulletin of the Geoloical Society of Finland,1997,69(1-2):5-30.
[11] Riley T R, Bailey D K, Harmer R E, et al. Isotopic and geochemical investigation of a carbonatite-syenite-phonolite, West Eifel(Germany)[J]. Min Mag, 1999, 63 (5): 615-631.
[12] Demeny A, Ahijado A, Casillas R, et al. Crustal contamination and Fluid/Rock interaction in the carbonatites of Fuerterentura, Canary Islands,Spain: A C, H, O isotope study[J]. Lithos, 1998, 44: 101-115.
[13] Benito R, Lopoz-Ruiz J, Cebria J M, et al. Sr and O isotope constraint on source and crustal contamination in the high-K calc-alkaline and shoshonitic Neogene volcanic rocks of S E Spain[J]. Lithos, 1999, 46: 773-802.
[14] Wu Liangshi. Mesozoic alkaline magmatism and metallization in Southeast Mongolia[J]. Geology-Geochemistry, 1998, 26(2): 97-102. [吴良士.蒙古东南部中生代碱性岩浆活动与成矿[J].地质地球化学,1998,26(2):97-102.]
[15] Jovoy M, Pineau F, Staudacher T, et al. Mantle volatiles sampled from a continental rift: the 1988 eruption of Oldoinyo Lengai[J]. Terra abstr, 1989, 1: 324.
[16] Deines P. Stable isotope variations in carbonatites[A]. In:Bell K ed. Carbonatites[C]. London: Unwin Hyman, 1989. 301-357.
[17] Hoefs J. Stable isotope geochemistry(3rd ed) [M]. Berlin  Heidelberg, New York: Springer, 1987. 241.
[18] Chen Yongjian, Liu Deliang, Yang Xiaoyong et al. a primary study on the relationship between the Tancheng-Lujiang fault system and mantle-derived magmatogenetic CO2 in East China [J]. Geology-Geochemistry. 1999,27(1): 38-48.[陈永见,刘德良,杨晓勇,等. 郯庐断裂系统与中国东部幔源岩浆成因CO2关系的初探[J]. 地质地球化学, 1999, 27(1): 38-48.]
[19] Open Laboratory of Ore Deposit Geochemistry, Chinese academy of Sciences. Ore Deposit Geochemistry [M]. Beijing: Geological Publishing House. 1997.481-500.[中国科学院矿床地球化学开放研究实验室. 矿床地球化学[M]. 北京: 地质出版社, 1997.481-500.]
[20] Roedder E. 流体包裹体(下)[M]. 卢焕章,王卿铎,等译. 长沙: 中南工业大学出版社, 1986.46-174.
[21] Stoppa F, Wooley a R. The Italian carbonatites: field occurrence, petrology and regional significance[J]. Mineral and Petrol, 1997, 59: 43-67
[22] Zhu Xun,ed. Status of Mineral Resources of China (Volume 2: Metallic minerals)[M]. Beijing: Science Press. 1999,631-665.[朱训,主编. 中国矿情(第二卷 金属矿产)[M]. 北京: 科学出版社, 1999. 631-665.]
[23] Wall F, Williams C T, Woolley A R. Pyrochlore from weathered carbonatite at Lueshe, Zaire[J]. Min Mag, 1996, 60: 731-750.
[24] Veksler H V, Kepper H. Partitioning of Mg,Ca and Na between carbonatite melt and hydrous fluid at 0.1~0.2 Gpa[J]. Contrib Mineral Petrol,2000,138:27-34.
[25] Zhao Lunshan, Zhang Benren ,ed. Geochemistry [M]. Beijing: Geological Publishing House. 1988,293-326.[赵仑山,张本仁 ,等编. 地球化学[M]. 北京: 地质出版社, 1988. 293-326.]
[26] Samson I M, Liu W, Williams-Jones A E. The nature of orthomagmatic hydrothermal fluid in the Oka carbonatite, Quebec, Canada: Evidence from fluid inclusions[J]. Geoch et Cos Acta, 1995, 59(10): 1963-1977.
[27] Palmer D A S, Williams-Jones A W. Genesis of the carbonatite-hosted fluorite deposit at amba Dongar, India: Evidence from fluid inclusions stable isotopes, and whole rock-mineral geochemistry[J]. Economic Geology, 1996, 91: 934-950.
[28] Rankin A H. Fluid inclusion evidence for the formation conditions of apatite from the Tororo carbonatite complex of eastern Uganda[J]. Min Mag, 1977, 41: 155-164.
[29] Anderson T. Magmatic fluids in the Fen carbonatite-complex, SE Norway: Evidence of mid-crustal fractionation 15 from solid and fluid inclusions in apatite[J]. Contrib Mineral Petrol, 1986, 93: 491-533.
[30] Rankin A H. Fluid inclusion studies in apatite from carbonatite of the Wasaki area of Western Kenya[J]. Lithos, 1975, 8: 123-136.
[31] Rankin A H, Le Bas M J. Liquid immiscibility between silicate and carbonate melts in naturally occurring ijolite magma[J]. Nature, 1974, 250: 206-209.
[32] Nesbitt B E, Kelty W C. Magamaticand hydrothermal inclusions in carbonatite of the Magnet Cove complex, arkansas[J]. Contrib Mineral Petrol, 1977, 63: 271-294.
[33]  Ni Pei, Shen Kun. Progress of studies on inclusions in carbonatite-alkaline complexes [A]. In: Oyang Ziyuan . Studies and prospects on petrology, mineralogy and geochemistry at the transition of centuries[C]. Beijing: Nuclear Publishing House. 1998,127-130.[倪培,沈昆. 碳酸岩—碱性杂岩体中包裹体的研究进展[A]. 见: 欧阳自远 主编. 世纪之交岩石学矿物学地球化学的研究与展望[C]. 北京: 原子能出版社, 1998. 127-130.]
[34] Wallace M E, Green D H. an experimental determination of primary carbonatite composition[J]. Nature, 1988, 335: 343-346.
[35] Sweeney R. Carbonatite melt compositions in the earth's mantle[J]. Earth Planet Sci Lett, 1994, 128: 259-270.
[36] Lee W J, Wyllie P J. Liquid immiscibiliy between nephelinite and carbonatite from 1.0 to 2.5 GPa compared with mantle melt compositions
[J]. Contrib Mineral Petrol, 1997, 127: 1-16.
[37] Wyllie P J, Huang W L. Carbonatition and melting reactions in the system CaO-MgO-SiO2-CO2 at mantle pressures with geophysical and petrological applications[J]. Contri Mineral Petrol, 1976, 54: 79-107.
[38] Baker M B, Wyllie P J. Liquid immiscibity in a nephelinite-carbonate system at 25 kbar and implications for carbonatite origin[J]. Nature, 1990, 246: 168-170.
[39] Ting W, Burke E a J, Rankin a H, et al. Characteristics and petrogenetic significance of CO2, H2O and CH4 fluid inclusions in apatite from the Sukulu carbonatite, Uganda[J]. Eur J Mineral, 1994, 6: 787-803.
[40] Roedder E. Fluid inclusions from the fluorite deposits associated with carbonatite of amba Dongar, India, and Okorusu, Southwest africa[J]. Inst Mining Metall Trans, sect, 1973, 199: 135-137.
[41] 杰尔诺夫—佩加列夫B Φ, 哈拉尔莫夫E C. 人造方解石晶体和天然方解石晶体中的包裹体温度与碳酸岩形成条件的某些问题[M].见:陈安福,卢焕章,余铁阶,等编译. 矿物中的包裹体[C]. 北京:科学出版社,1989.35-40.

[1] 陈璐,孙若愚,刘羿,徐海. 海洋铜锌同位素地球化学研究进展[J]. 地球科学进展, 2021, 36(6): 592-603.
[2] 储著银, 许继峰. 铼—锇同位素和铂族元素分析方法及地学应用进展[J]. 地球科学进展, 2021, 36(3): 245-264.
[3] 闫雅妮, 张伟, 张俊文, 任亚雄, 赵志琦. 大陆硅酸盐岩石风化过程中镁同位素地球化学研究进展[J]. 地球科学进展, 2021, 36(3): 325-334.
[4] 张子洋, 闫明, MULVANEY Robert, 季峻峰, 效存德, 刘雷保, 安春雷. 东南极 LGB69冰芯 17122001年气温变化记录的初步研究[J]. 地球科学进展, 2021, 36(2): 172-184.
[5] 梁承弘, 鹿化煜. 风成沉积物叶蜡氢同位素在揭示东亚季风区干湿变化中的原理及应用[J]. 地球科学进展, 2021, 36(1): 45-57.
[6] 单森,齐远志,罗春乐,付文静,薛跃君,王旭晨. 中国主要河流输送陆源碳的同位素特征及影响因素[J]. 地球科学进展, 2020, 35(9): 948-961.
[7] 李旭明,李来峰,王浩贤,王野,陈旸. 土壤中次生与碎屑组分的差异性剥蚀[J]. 地球科学进展, 2020, 35(8): 826-838.
[8] 赖正,苏妮,吴舟扬,连尔刚,杨承帆,李芳亮,杨守业. 流域风化过程稳定锶同位素的分馏与示踪[J]. 地球科学进展, 2020, 35(7): 691-703.
[9] 余小灿,刘成林,王春连. 锂同位素地球化学在大陆地热体系研究中的应用[J]. 地球科学进展, 2020, 35(3): 246-258.
[10] 朱艳宸,李丽,王鹏,贺娟,贾国东. 海洋氮循环中稳定氮同位素变化与地质记录研究进展[J]. 地球科学进展, 2020, 35(2): 167-179.
[11] 常鑫,张明宇,谷玉,王厚杰,刘喜停. 黄、东海陆架泥质区自生黄铁矿成因及其控制因素[J]. 地球科学进展, 2020, 35(12): 1306-1320.
[12] 周涛, 蒋壮, 耿雷. 大气氧化态活性氮循环与稳定同位素过程:问题与展望[J]. 地球科学进展, 2019, 34(9): 922-935.
[13] 温学发,张心昱,魏杰,吕斯丹,王静,陈昌华,宋贤威,王晶苑,戴晓琴. 地球关键带视角理解生态系统碳生物地球化学过程与机制[J]. 地球科学进展, 2019, 34(5): 471-479.
[14] 张为,周丽,唐红峰,李和平,王力. 水热体系中 Na2SO4/K2SO4 溶解度的热力学计算[J]. 地球科学进展, 2019, 34(4): 414-423.
[15] 马晓旭,刘传联,金晓波,张洪瑞,马瑞罡. 长链烯酮在古大气二氧化碳分压重建的应用[J]. 地球科学进展, 2019, 34(3): 265-274.
阅读次数
全文


摘要