地球科学进展 ›› 2001, Vol. 16 ›› Issue (3): 374 -381. doi: 10.11867/j.issn.1001-8166.2001.03.0374

综述与评述 上一篇    下一篇

洞穴滴石石笋与陆地古环境记录研究进展
章程,袁道先   
  1. 国土资源部岩溶动力学开放研究实验室,广西 桂林  541004
  • 收稿日期:2000-10-12 修回日期:2000-11-20 出版日期:2001-06-01
  • 通讯作者: 章程(1965-),男,浙江诸暨市人,副研究员,主要从事岩溶环境学研究. E-mail:kdl@mailbox.gxnu.edu.cn
  • 基金资助:

    国家自然科学基金重点项目“我国典型岩溶动力系统与环境的相互作用与演变”(编号:49632100);国土资源部重点项目“我国典型岩溶环境系统的运动规律及其对全球变化的影响”(编号:9501104)联合资助.

STUDY ON CONTINENTAL PALEOENVIRONMENTAL PROXY BASED ON SPELEOTHEMS(DROP STONES)

ZHANG Cheng, YUAN Dao-xian   

  1. Karst Dynamics Laboratory,Ministry of Land Resources,Guilin541004,China
  • Received:2000-10-12 Revised:2000-11-20 Online:2001-06-01 Published:2001-06-01

洞穴碳酸盐沉积与其它自然材料相比,具有分布广,时间跨度大,生长机制对环境敏感,保存信息完整,适合于U系测年等特点。可与海洋沉积物、冰芯、树轮相媲美。尤其是洞穴滴石石笋为大陆气候替代指标提供了一类独特的数据源。从稳定同位素地球化学、石笋微层、微量元素地球化学、洞穴碳酸盐结晶学和岩石学等方面论述了该领域的最新研究进展。如利用洞穴碳酸盐δ函数定量地分离出纯的温度信号;利用石笋碳同位素变化及草原与森林生态系统光合作用的差异特征,恢复草原-森林间的演变过程,显示了其在全球变化研究中的重要地位和作用。

 Compared with other natural materials, speleothems have many superiorities, such as wide ranging distribution, long time span, sensitive to outside environment, full scale information, suitable for U series dating, and play the same important role as the sea deposits, ice core, tree rings do. In particular, Cave dropstones stalagmites offered us a kind of distinctive data source as continental paleoclimate archives. In this paper, the authors reviewed the advance in this field in detail from the stable isotope, stalagmite microbanding, trace elements geochemistry, petrology and crystallography of speleothems. For example, a pure temperature signal has been separated out from the records by utilizing speleothem delta function, and the history of changing vegetation has been traced by using the δ 13 C in speleothem calcite and the variation in the photosynthetic pathway of prairie plants compared to forest species. The advance has unfolded its importance in global change study.

中图分类号: 

[1]  Winograd I J, Coplen T B, Landwehr J M,et al. Continuous 500,000 year climate record from vein calcite in Devils Hole,Nevada[J]. Science, 1992, 258: 255-260.
[2]  Baker A, Smart P L, Edwards R L,et al. Annual growth banding in a cave stalagmite[J]. Nature, 1993, 364:518-520.
[3]  Liu Dongsheng, Tan Ming, Qin Xiaoguang,et al. Discovery of microbanding in speleothems in China and its significance in study of global change[J].Quaternary Sciences. 1997,(1):41-51.[刘东生,谭明,秦小光,等.洞穴碳酸钙微层理在中国的首次发现及其对全球变化研究的意义[J].第四纪研究,1997,(1): 41-51.]
[4]  Lauritzen S E. High-resolution paleotemperature proxy record during the last interglaciation in Norway from speleothems[J], Quaternary Research, 1995, 43: 133-146.
[5]  Holmgren K, Karlen W, Lauritzen S E,et al. A 3000-year high-resolution stalagmite-based record of paleoclimate for northeastern South Africa[J]. The Holocene, 1999, 9(3):295-309.
[6]  Yuan Daoxian.Karst processes sensitivity to environmental change and its records[J]. Chinese Science Bulletin, 1995,40(13):1 210-1 213.[袁道先.岩溶作用对环境变化的敏感性及其记录[J].科学通报,1995,40(13):1 210-1 213.]
[7]  Lauritzen S E, Lundburg J. Calibration of the speleothem delta function: an absolute temperature record for the Holocene in north Norway[J]. The Holocene, 1999, 9(6):659-669.
[8]  Hendy C H. The isotope geochemistry of spleothems I. The calculation of the effects of different modes of formation on the isotopic composition of speleothems and their applicability as paleoclimate indicators[J]. Geochimica et Cosmochimica Acta, 1971, 35:801-824.
[9]  William P W, Marshall A, Ford D C,et al. Palaeoclimatic interpretation of stable isotope data from Holocene speleothems of the Waitomo District, North Island, New Zealand[J]. The Holocene, 1999, 9(6): 649-657.
[10]  Gascoyne M. Palaeoclimate determination from cave calcite deposits[J]. Quaternary Science Reviews, 1992, 11: 609-632.
[11]  O' Neil J R, Adami L Hand Epstein S. Revised value for the 18O fractionation factor between H2O and CO2at 25℃[J]. United States Geological Survey Research, 1975,(3):623-624.
[12]  Zheng Shuhui,Hou Fagao, Ni Baoling. Study on hydrogen and oxygen stable isotope of precipitation in China[J].Chinese Science Bulletin, 1983,(13):801-806.[郑淑惠,侯发高,倪葆龄.我国大气降水的氢氧稳定同位素研究[J].科学通报,1983,(13):801-806.]
[13]  Tan Ming, Liu Dongsheng. Study on paleoclimatic records from cave calcite deposits[J]. Advancein in Earth Sciences,1996,11(4):388-395.[谭明,刘东生.洞穴碳酸钙沉积的古气候记录研究[J].地球科学进展,1996,11(4):388-395.]
[14]  Li Bin. Significance of δ13C,δ18O of speleothems for environmental changes[J].Carsologica Sinica, 1994,13(1):17-24.[李彬.洞穴化学沉积物中δ13C、δ18O对环境变迁的示踪意义[J].中国岩溶,1994,13(1):17-24.]
[15]  Hong A' shi, Peng Zicheng, Li Ping. Isotope geochemistry method for paleotemperature of stalagmites[J].Advance in Earth Sciences,1995,10(4):348-352.[洪阿实,彭子成,李平.洞穴石笋古温度的同位素地球化学方法[J].地球科学进展,1995,10(4):348-352.]
[16]  Qin J. Studies on oxygen isotope thermometry of cave sediment and paleoclimatic record[J]. Carsologica Sinica,1996,15(1-2):174-182.
[17]  Dorale J A, Gonzalez L A, Reagan M K,et al. A high-resolution record of Holocene climate change in speleothem calcite from cold water cave, northeast Iowa[J]. Science, 1992,258: 1 626-1 630.
[18]  Cerling T E, Quade J. Stable carbon and oxygen isotope in soil carbonates[A]. In: Climate Change in Continental Isotope records [C]. Washington: American Geophysical Union, 1993.217-31.
[19]  Boutton T W. Stable carbon isotope ratios of natural materials. II. Atmospheric, terrestrial, marine, and fresh water environment[A]. In:Coleman D C, Fry B, eds. Carbon Isotope Technique[C]. San Diego: Academic Press, 1991.155-171.
[20]  Talma A S, Vogel J C. Late Quaternary paleotemperatures derived from a speleothem from Cango cave, Cape province,South Africa[J]. Quaternary Research,1992,(37):203-213.
[21]  Ehleringer J R, Brooks J R, Flanagan L B,et al. Carbon isotope composition of bored plants: functional grouping of life forms[J]. Oecologia,1997,(110):301-11.
[22]  Vogel J C, Fuls A, Ellis R P. The geolographical distribution of Kranz grasses in South Africa[J]. South Africa Journal of Science, 1978,(74):209-15.
[23]  Denniston R F, Gonzalez L A, Baker R G,et al. Speleothem evidence for Holocene fluctuations of the prairie-forest ecotone, north-central USA[J]. The Holocene, 1999, 9(6):671-676.
[24]  Schwarcz H P. Geochronology and isotopic geochemistry of speleothems[A]. In: Fritz P, Fontes J C, eds. Handbook of Environmental Isotope Geochemistry, Vol.2: the Terrestrial Environment[C]. Amsterdam: Elsevier,1986.271-300.                    
[25]  Frumkin A, Carmi I, Gopher A,et al. A Holocene milliennial-scale climate cycle from a speleothem in Nahal Qanah cave, Israel[J]. The Holocene, 1999, 9(6): 677-682.
[26]  Shopov Y Y, Ford D C, Schwarcz H. Luminescent microbanding in speleothems: High-resolution chronology and paleoclimate[J]. Geology, 1994, 22:407-410.
[27]  Railsback L B, Brook G A, Chen J,et al. Environmental controls on the petrology of a late Holocene speleothem from Botswana with annual layers of aragonite and calcite[J].Journal of Sedimentary Research, 1994, 64:147-155.
[28]  Genty D, Quinif Y. Annually laminated sequences in the internal structure of some Belgian stalagmites: Importance of paleoclimatology [ J]. Journal of Sedimentary Research,1996, 66:275-288.
[29]  Tan Ming, Qin Xiaoguang, Liu Dongsheng, Interannual, decadal and century scale climatic changes revealed by stalagmite records[J]. Science in China(Ser D), 1998,28(3):272-277.[谭明,秦小光,刘东生.石笋记录的年际、十年、百年尺度气候变化[J].中国科学(D辑),1998,28(3):272-277.]
[30]  Tan Ming, Qin Xiaoguang, Shen Linmei,et al. Bioptical microcycles of laminated speleothems from China and their chronological significance [ J ]. Chinese Science Bulletin,1999,44(6):646-648.[谭明,秦小光,沈凛梅,等.中国洞穴碳酸盐双重光性显微旋回及其意义[J].科学通报,1999,44(6):646-468.]
[31]  Shopov Y Y. Laser luminescent microzonal analysis—A new method for investigation of alternations of climate and solar activity during the Quaternary [A]. In: Kiknadze T, ed.Problems of Karst Study in Mountainous Countries [C].Tbilisi Georgia, Metsniereba, 1987. 228-232.
[32]  Baker A, Barnes W, Smart P L. Speleothem luminescence intensity and spectral characteristics: Signal calibration and a record of paleovegetation change[J]. Chemical Geology,1996, 130: 65-76.
[33]  Qin Xiaoguang,Liu Dongsheng, Tan Ming,et al. Grey characteristics of microbanding of stalagmite in Shihua Cave, Beijing and itsclimatic signification ( 1 )—The study of microstructure of microbanding[J]. Science in China(Ser D),1998,28(2):151-157.[秦小光,刘东生,谭明,等.北京石花洞石笋微层灰度变化特征及其气候意义(1)——微层显微特征研究[J].中国科学(D辑),1998,28(2):151-157.]
[34]  Ramseyer K, Miano T, D' Orazio V,et al. Nature and origin of organic matter in carbonates from speleothems, marine cements and coral skeletons[J]. Organic Geochemistry, 1997,26: 361-78.
[35]  Genty D, Baker A, Barnes W. Comparison entre les lamines luminescentes et les lamines visibles annuelles de stalagmites[J]. Comptes Rendus Acad Sci, Paris, Earth and Planetary Sciences, 1997, 325: 193-200.
[36]  Baker A, Barnes W L, Smart P L. Variations in the discharge and organic matter content of stalagmite drip waters in Lower Cave, Bristol[J]. Hydrological Processes, 1997,11(11): 1 541-1 555.
[37]  Wang Xianfeng, Liu Dongsheng, Liang Handong,et al.Preliminary analyses by SIMS on trace components of stalagmite microlayers and their climate significance[J].Quaternary Sciences, 1999,(1):59-66.[王先锋,刘东生,梁汉东,等.石笋微层物质组成的二次离子质谱初步分析及其气候意义[J].第四纪研究,1999,(1):59-66.]
[38]  Qin Xiaoguang, Liu Dongsheng, Tan Ming,et al. Thespectral analysis for a lamina thickness series of a stalagmite in Beijing and the climate variation in last lka[J]. Acta Geographica Sinica, 1999,54(6):543-549.[秦小光,刘东生,谭明,等.石笋微层的谱分析和北京地区1千年来的气候演变[J].地理学报,1999,54(6):543-549.]
[39]  Baker A, Proctor C J, Barnes W L. Variations in stalagmite luminescence laminae structure at Pool' s Cavern, England,AD 1910~1996; Calibration of a palaeoprecipitation proxy[J]. The Holocene, 1999, 9(6): 683-688.
[40]  Brook G A, Rafter M A, Railsback L B. A high-resolution proxy record of rainfall and ENSO since AD 1550 from layering in stalagmites from Anjohibe Cave, Madagascar[J]. The Holocene, 1999, 9(6): 695-705.
[41]  Ayalon A, Bar-Matthews M, Kaufman A. Petrography, strontium, barium, and uranium concentrations, and strontium and uranium isotope ratios in speleothems as palaeoclimatic proxies: Soreq Cave, Israel[J]. The Holocene, 1999. 9(6):715-722.
[42]  Burton E A, Walter L M. The effects of and temperature on magnesium incorporation in calcite on seawater and MgCl2-CaCl2solution[J]. Geochimica et Cosmochimica Acta, 1991,(55):777-85.
[43]  Goede J C, Vogel J C. Trace element variations and dating of a late Pleistocene Tasmanian speleothem[J]. Paleogeography, Paleoclimatology, Paleoecology, 1991,(88):121-31.
[44]  Roberts M S, Smart P C, Baker A. Annual trace element variations in a Holocene Speleothem[J]. Earth and Planetary Science Letters, 1998,154: 237-246.
[45]  Roberts M S, Smart P L, Chris J,et al. Trace element Variations in coeval Holocene speleothems from GB Cave, southwest England[J]. The Holocene, 1999, 9(6): 707-713.
[46]  Goede A, McCulloch M, McDermott F,et al. Aeolian contribution to strontium and strontium isotope variations in a Tasmanian speleothem[J]. Chemical Geology,1998,(149):37-50.
[47]  Bar-Matthews M, Ayalon A, Kaufman A,et al. The Eastern Mediterranean paleoclimate as a reflection of regional events: Soreq Cave, Israel[J]. Earth and Planetary Science Letters, 1999,(166):85-95.
[48]  Gonzalez L A, Carpenter S J, Lohman K C. Inorganic calcite morphology: roles of fluid chemistry and fluid flow[J]. Journal of Sedimentary Petrology, 1992,(62):382-99.

[1] 康健,陈列锰,宋谢炎,戴智慧,郑文勤. 金川超大型 Ni-Cu-( PGE)矿床橄榄石微量元素特征及地质意义[J]. 地球科学进展, 2019, 34(4): 382-398.
[2] 林祖苇,赵新福,熊乐,朱照先. 胶东三山岛金矿床黄铁矿原位微区微量元素特征及对矿床成因的指示[J]. 地球科学进展, 2019, 34(4): 399-413.
[3] 秦瑞,史贵涛,陈振楼. 大气硝酸盐中氮氧稳定同位素研究进展[J]. 地球科学进展, 2019, 34(2): 124-139.
[4] 王学界, 章新平, 张婉君, 张新主, 罗紫东. 全球降水中氢氧稳定同位素GCM模拟空间分布的比较[J]. 地球科学进展, 2017, 32(9): 983-995.
[5] 黄柯, 朱明田, 张连昌, 李文君, 高炳宇. 磁铁矿LA-ICP-MS分析在矿床成因研究中的应用[J]. 地球科学进展, 2017, 32(3): 262-275.
[6] 牛耀龄, 龚红梅, 王晓红, 肖媛媛, 郭鹏远, 邵凤丽, 孙普, 陈硕, 段梦, 孔娟娟, 王国栋, 薛琦琪, 高雅洁, 洪迪. 用非传统稳定同位素探索全球大洋玄武岩、深海橄榄岩成因和地球动力学的几个重要问题[J]. 地球科学进展, 2017, 32(2): 111-127.
[7] 黄从俊, 李泽琴. 拉拉IOCG矿床萤石的微量元素地球化学特征及其指示意义[J]. 地球科学进展, 2015, 30(9): 1063-1073.
[8] 张乾柱, 陶贞, 高全洲, 马赞文. 河流溶解硅的生物地球化学循环研究综述[J]. 地球科学进展, 2015, 30(1): 50-59.
[9] 罗维均, 王世杰, 刘秀明. 喀斯特洞穴系统碳循环的烟囱效应研究现状及展望 *[J]. 地球科学进展, 2014, 29(12): 1333-1340.
[10] 洪义国. 硝酸盐氮氧稳定同位素分馏过程记录的海洋氮循环研究进展[J]. 地球科学进展, 2013, 28(7): 751-764.
[11] 曹 剑,吴 明,王绪龙,胡文瑄,向宝力,孙平安,施春华,鲍海娟. 油源对比微量元素地球化学研究进展[J]. 地球科学进展, 2012, 27(9): 925-937.
[12] 杨吉龙,韩冬梅,苏小四,肖国强,赵长荣,宋庆春,汪娜. 环境同位素特征对滨海岩溶地区海水入侵过程的指示意义[J]. 地球科学进展, 2012, 27(12): 1344-1352.
[13] 黄建国,李虎杰,李文杰,董 磊. 贵州戈塘金矿萤石微量元素特征及钐—钕测年[J]. 地球科学进展, 2012, 27(10): 1087-1093.
[14] 李仁成,谢树成,顾延生. 植硅体稳定同位素生物地球化学研究进展[J]. 地球科学进展, 2010, 25(8): 812-819.
[15] 陈莹,庄国顺,郭志刚. 近海营养盐和微量元素的大气沉降[J]. 地球科学进展, 2010, 25(7): 682-690.
阅读次数
全文


摘要