[1] Webb E A, Longstaffe F J. The oxygen isotopic compositions of silica phytoliths and plant water in grasses: Implications for the study of paleoclimate[J].Geochimica et Cosmochimica Acta,2000, 64: 767-780. [2] Fredlund G G, Tieszen L T. Modern phytolith assemblages from the north American great plains[J].Journal of Biogeography, 1994, 21:321-335. [3] Lu Houyuan, Wu Naiqing, Yang Xiangdong, et al. Phytoliths as quantitative indicators for the reconstruction of past environmental conditions in China I: Phytolith-based transfer functions[J].Quaternary Science Reviews, 2006, 25: 945-959. [4] Blinnikov M S. Phytoliths in plants and soils of the interior Pacific Northwest, USA[J].Review of Paleobotany and Palynology,2005, 135:71-98. [5] Zhang Xinrong, Hu Ke, Jie Dongmei. Characteristics of phytolith assemblages in surface soil from the vertical forest zones of the Changbai mountains[J]. Acta Geoscience Sinica,2006, 27: 169-173.[张新荣, 胡克, 介冬梅. 长白山北坡垂直植被带表土植硅体组合研究[J]. 地球学报, 2006, 27: 169-173.] [6] Alexandre A, Meunier J D, Lezine A M, et al. Phytoliths: Indicators of grassland dynamics during the late Holocene in intertropical Africa[J].Palaeogeograph, Palaeoclimatology, Palaeoecology,1997, 136: 213-329. [7] Lv Houyuan, Wu Naiqin, Liu Dongsheng, et al. Seasonal climatic variation recorded by phytolith assemblages from the Baoji loess sequence in central China over the last 150 000 a[J]. Science in China (Series D),1996,26(2): 131-136.[吕厚远,吴乃琴,刘东生,等.150 ka来宝鸡黄土植硅体组合季节性气候变化[J]. 中国科学:D辑, 1996, 26(2): 131-136.] [8] Abrantes F A. 340,000 year continental climate record from tropical Africa news from opal phytoliths from the equatorial Atlantic[J].Earth and Planetary Science Letters,2003, 209: 165-179. [9] Gu Yansheng,Qin Yangmin, Zhu Zongmin. Mid-late Pleistocene palaeovegetation and palaeoclimate change reconstructed by phytolith and molecular fossil records of vermicular red earth in Changxing, Zhejiang[J].Marine Geology & Quaternary Geology,2007, 27 (1): 125-130.[顾延生,秦养民,朱宗敏.浙江长兴中—晚更新世红土植桂体与分子化石记录及其环境意义[J]. 海洋地质与第四纪地质, 2007, 27 (1): 125-130.] [10] Boyd M. Phytoliths as paleoenvironmental indicators in a dune field on the northern great plains[J].Journal of Arid Environments,2005, 61: 357-375. [11] Li Rencheng, Cater J A, Xie Shucheng, et al. Phytoliths and microcharcoal at Jinluojia archeological site in middle reaches of Yangtze river indicative of paleoclimate and human activity during the last 3000 years[J]. Journal of Archaeological Science,2010, 37: 124-132. [12] Wallis L A. Environmental history of northwest Australia based on phytolith analysis at Carpenter's Gap 1[J]. Quaternary International,2001, 83/85: 103-117. [13] Mercader J, Runge F, Vrydaghs L, et al. Phytoliths from archaeological sites in the tropical forest of Ituri, Democratic Republic of Congo[J]. Quaternary Research,2000, 54: 102-112. [14] Vandana P, Strömberg Caroline A E, Habib A, et al. Dinosaur coprolites and the early evolution of grasses and grazers[J]. Science, 2005, 310: 1 177-1 189. [15] Shahack-Gross R, Finkelstein I. Subsistence practices in an arid environment: A geoarchaeological investigation in an Iron age site, the Negev Highlands, Israel[J].Journal of Archaeological Science,2008, 35: 965-982. [16] Tsartsidou G, Lev-Yadun S, Efstratiou N, et al. Ethnoarchaeological study of phytolith assemblages from an agro-pastoral village in northern Greece (Sarakini):Development and application of a phytolith difference index[J].Journal of Archeological Science,2008, 35: 600-613. [17] Piperno D R, Andres T C, Stothert K E. Phytoliths in cucurbita and other neotropical cucurbitaceae and their occurrence in early archaeological sites from the lowland American Tropics[J].Journal of Archaeological Science,2000, 27: 193-208. [18] Portillo M, Albert R M, Henry D O. Domestic activities and spatial distribution in Ain Abū Nukhayla (Wadi Rum, Southern Jordan): The use of phytoliths and spherulites studies[J].Quaternary International,2009, 193:174-183. [19] Lu Houyuan, Yang Xiaoyan, Ye Maolin, et al. Millet noodles in Late Neolithic China[J]. Nature,2005, 437: 967-968. [20] Harrison C C. Evidence for intramineral macromolecules containing protein from plant silicas[J]. Phytochemistry,1996, 41:37-42. [21] Parker A G, Eckersley L, Smith M M, et al. Holocene vegetation dynamics in the northeastern Rub′al-Khali desert, Arabian Peninsula: A pollen, phytolith and carbon isotope study[J].Journal of Quaternary Science, 2004, 19: 665-676. [22] Smith F A, Anderson K B. Characterization of organic compounds in phytoliths: Improving the resolving power of phytolith δ13C as a tool for paleoecological reconstruction of C3 and C4 grasses. Phytoliths: Applications in Earth[C]//Meunier J D, Colin F, eds. Phytoliths: Applications in Earth Science and Human History. Rotterdam: A A Balkema Publishers, 2001:317-327. [23] Kelly E, Amundson R G, Marino B D, et al. Stable isotope ratios of carbon in phytoliths as a quantitative method of monitoring vegetation and climate change[J]. Quaternary Research,1991, 35: 222-233. [24] Parr J F, Sullivan L A. Soil carbon sequestration in phytoliths[J]. Soil Biology & Biochemistry,2005, 37: 117-124. [25] Smith F A, White J W C. Modern calibration of phytolith carbon signatures for C3/C4 paleograssland reconstruction[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2004, 207: 277-304. [26] Piperno D R, Sues H. Dinosaurs dined on grass[J].Science,2005, 310: 1 126-1 128. [27] Ding T P, Tian S H, Sun L, et al. Silicon isotope fractionation between rice plants and nutrient solution and its significance to the study of the silicon cycle[J]. Geochimica et Cosmochimica Acta,2008, 72: 5 600-5 615. [28] Opfergelt S, Cardinal D, Henriet C, et al. Silicon isotopic fractionation by banana (Musa spp.) grown in a continuous nutrient flow device[J]. Plant Soil,2006, 285: 333-345. [29] Shahack-Gross R, Shemesh A, Yakir D, et al. Oxygen isotopic composition of opaline phytoliths: Potential for terrestrial climatic reconstruction[J]. Geochimica et Cosmochimica Acta,1996, 60: 3 949-3 953. [30] Webb E, Longstaffef F J. Climatic influences on the oxygen isotopic composition of biogenic silica in prairie grass[J].Geochimica et Cosmochimica Acta,2002, 66: 1 891-1 904. [31] Hodson M J, Parker A G, Leng M J, et al. Silicon, oxygen and carbon isotope composition of wheat (Triticum aestivum L.) phytoliths: Implications for palaeoecology and archaeology[J]. Journal of Quaternary Science,2008, 23 (4): 331-339. [32] Wang Yongji. A study on the chemical compositon of phytolith[J]. Journal of Oceanography of Huanghai & Bohai Sea,1998, 16 (3): 33-37.[王永吉.植物硅酸体化学成分的研究[J].黄渤海海洋, 1998, 16 (3): 33-37.] [33] Jones L H P, Handreck K A. Silica in soil, plants and animals[J].Advances in Argonomy,1967, 19: 107-149. [34] Shui Maoxing, Du Xin, Chen Defu, et al. Effect of soluble silicon fertilizer on rice resistance to blast[J].Acta Agriculturae Zhejiang Gensis,1995, 7(4): 289-292.[水茂兴,杜新, 陈德富. 法高效硅肥对水稻抗稻瘟病效果分析[J]. 浙江农业学报, 1995, 7(4): 289-292.] [35] Elbaum R, Melamed-Bessudo C, Tuross N. New methods to isolate organic materials from silicified phytoliths reveal fragmented glycoproteins but no DNA[J]. Quaternary International,2009, 193: 11-19. [36] Piperno D R. Phytolith Analysis: An Archaeological and Geological Perspective[M]. Academic Press: San Diego,1987. [37] Carter J A. Atmospheric carbon isotope signatures in phytolith-occluded carbon[J].Quaternary International,2009, 193: 20-29.[38] Elbaum R, Weiner S, Albert R M, et al. Detection of burning of plant materials in the archaeological record by changes in the refractive indices of siliceous phytoliths[J]. Journal of Archaeological Science,2003, 30: 217-226. [39] Webb E A, Longstaffe F J. The relationship between phytolith-and plant-water 18O values in grasses[J].Geochimica et Cosmochimica Acta,2003, 67: 1 437-1 449. [40] Farquhar G D, Cernusak L A, Barnes B. Heavy water fractionation during transpiration[J]. Plant Physiology, 2007, 143: 11-18.[41] Tréguer P, Nelson D M, Van Bennkom A J, et al. The silica balance in the world ocean: A reestimate[J]. Science,1995, 268: 375-379. [42] Ding T P, Zhou J X, Wan D F, et al. Silicon isotope fractionation in bamboo and its significance to the biogeochemical cycle of silicon[J]. Geochimica et Cosmochimica Acta,2008, 72: 1 381-1 395. [43] Ding T P, Ma G R, Tian S H, et al. Effect of rice growth on geochemical circle of silicon: Silicon isotope study on rice plants grew in field and laboratory[J]. Geochimica et Cosmochimica Acta,2005, 69 (10): A551. [44] Ding Tiping,Tian Shihong, Sun Li. Study on silicon isotope tracing for silica mineralization in plants[J].Acta Geoscientica Sinica, 2009,30 (2): 129-142.[丁悌平, 田世红, 孙立.植物中硅矿化作用的硅同位素示踪研究[J].地球学报,2009, 30 (2): 129-142.] [45] Opfergelt S, Cardinal D, Henriet C, et al. Silicon isotope fractionation between plant parts in banana: In situ vs. in vitro[J].Journal of Geochemical Exploration,2006,88:224-227. [46] Kellogg E A. Phylogenetic aspects of the evolution of C4 photosynthesis[J]. C4 Plant Biology, 1999, 12:411-444. [47] Lu Houyuan, Wang Yongji, Wang Guoan,et al. Analysis of carbon isotope in phytoliths from C3 and C4 plants and modern soils[J]. Chinese Science Bulletin,2000, 45(19): 1 804-1 808. [48] Smith Francesca A, White James W C. Phytolith Carbon Isotope Evidence of Neogene Grassland Composition, Climate and CO2[R].Oral Presentation Geological Society of America Abstracts with Programs,2000,32:196(Reno, NV). [49] Arens N C, Jahren A H, Amundson R. Can C plants faithfully record the carbon isotopic composition of atmospheric carbon dioxide[J].Paleobiology, 2000, 26 (1): 137-164. [50] Piperno D R, Stothert K E. Phytolith evidence for early holocene cucurbita domestication in southwest Ecuador[J]. Science,2003, 299: 1 054-1 057. [51] Krull E S, Skjemstada J O, Graetzb D, et al. 13C-depleted charcoal from C4 grasses and the role ofoccluded carbon in phytoliths[J].Organic Geochemistry,2003, 34: 1 337-1 352. [52] Macko S A, Engel M H, Hartley G, et al. Isotopic composition of individual carbohydrates as indicators of early diagenesis of organic matter in peat[J]. Chemical Geology,1991, 93: 147-161. |