地球科学进展 ›› 2014, Vol. 29 ›› Issue (12): 1355 -1361. doi: 10.11867/j.issn.1001-8166.2014.12.1355

综述与评述 上一篇    下一篇

北冰洋CH 4研究进展
李玉红, 詹力扬 *, 陈立奇   
  1. 国家海洋局海洋—大气化学与全球变化重点实验室,国家海洋局第三海洋研究所,福建 厦门 361005
  • 收稿日期:2014-04-16 修回日期:2014-11-12 出版日期:2014-12-20
  • 通讯作者: 詹力扬(1977-),男,福建厦门人,副研究员,主要从事极区温室气体研究. E-mail:zhanliyang@tio.org.cn
  • 基金资助:

    国家海洋局第三海洋研究所基本科研业务费专项资金项目“海水中CH-4走航观测系统的研发”(编号:海三科2013004)资助

Advances on Studies of Methane in the Arctic Ocean

Li Yuhong, Zhan Liyang, Chen Liqi   

  1. Key Laboratory of Global Change and Marine-Atmospheric Chemistry of State Oceanic Administration, Third Institute of Oceanography, SOA, Xiamen, 361005, China
  • Received:2014-04-16 Revised:2014-11-12 Online:2014-12-20 Published:2014-12-20

甲烷(CH4)是一种重要的温室气体,工业革命以来,大气中CH4浓度已增长了2~3倍。北冰洋沿岸冻土地带和冰川地质区域下埋藏了巨量的CH4储量,在全球气候变化背景下,北冰洋快速增长的CH4释放通量和可能产生的后果引起了人们的广泛关注。综述了北冰洋CH4的研究现状,着重介绍了北冰洋CH4的分布特征、通量及其生物地球化学行为,最后探讨了该研究领域中存在的问题。

Methane(CH4) is an important greenhouse gas, CH4 concentrations in atmosphere hve increased by 2-3 times since the Industrial Revolution. Considering the huge CH4 storage in the Arctic Ocean, the fast increasing flux and their consequences are attracting more and more attention. This paper summarized the advances in the study of CH4 in the Arctic Ocean, especially the distribution pattern and air-sea flux and its biogeochemical cycle in the Arctic Ocean. It also presented the research prospect for the future.

中图分类号: 

[1] IPCC. Climate change 2007—The physical science basis[M]∥Working Group I Contribution to the Fourth assessment Report. Cambridge:Cambridge University Press, 2007.
[2] IPCC. The scientific basis[M]∥Contribution of Working Group I to the Third Assessment Report. Cambridge: Cambridge University Press, 2001.
[3] Wang Weibo, Zhao Jinping. Accumulation sea ice concentration and its action on understanding Arctic Sea ice dramatic change[J]. Advances in Earth Science, 2014, 29(6): 712-722. [王维波, 赵进平. 累积海冰密集度及其在认识北极海冰快速变化的作用[J]. 地球科学进展, 2014, 29(6):712-722.]
[4] Shao Qiuli, Zhao Jinping. On the deep water of the Nordic Sea[J]. Advances in Earth Science, 2014, 29(1): 42-55. [邵秋丽, 赵进平. 北欧海深层水的研究进展[J]. 地球科学进展, 2014,29(1): 42-55.]
[5] Liu J M, Song M R, Horton R M, et al. Reducing spread in climate model projections of a september ice-free Arctic[J]. Proceedings of the National Academy of Sciences, 2013, 110(31): 12 571-12 576.
[6] Gramberg I, Kulakov Y N, Pogrebitsky Y E, et al. Arctic Oil and Gas Super Basin[C]. London: World Petroleum Congress, 1983.
[7] Anthony K M W, Roberts G, Rapsomanikis S, et al. Geologic methane seeps along boundaries of Arctic permafrost thaw and melting glaciers[J]. Nature Geoscience, 2012, 5(6): 419-426.
[8] Zhu Renbin, Sun Liguang. Concentrations and emissions of greenhouse gases and climatic change in polar region[J]. Advances in Polar Science, 2002, 24(4): 79-86. [朱仁斌, 孙立广. 极区温室气体浓度和排放与气候变化[J]. 极地研究, 2002, 24(4): 79-86.]
[9] Kvenvolden K, Lilley M D, Lorenson T D, et al. The Beaufort Sea continental shelf as a seasonal source of atmospheric methane[J]. Geophysical Research Letters, 1993, 20(22): 2 459-2 462.
[10] Lammers S, Suess E, Hovland M. A large methane plume east of Bear Island (Barents Sea): Implications for the marine methane cycle[J]. Geologische Rundschau, 1995, 84(1): 59-66.
[11] Damm E, Mackensen A, Budéus G, et al. Pathways of methane in seawater: Plume spreading in an Arctic shelf environment (SW-Spitsbergen)[J]. Continental Shelf Research, 2005, 25(12/13): 1 453-1 472.
[12] Damm E, Schauer U, Rudels B, et al. Excess of bottom-released methane in an Arctic Shelf Sea polynya in winter[J]. Continental Shelf Research, 2007, 27(12): 1 692-1 701.
[13] Shakhova N, Semiletov I, Panteleev G. The distribution of methane on the Siberian Arctic shelves: Implications for the marine methane cycle[J]. Geophysical Research Letters, 2005, 32: 9 601.
[14] Shakhova N, Semiletov I. Methane release and coastal environment in the East Siberian Arctic Shelf[J]. Journal of Marine Systems, 2007, 66(1/4): 227-243.
[15] Shakhova N, Ivanovich V. The contribution of the East Siberian shelf to the modern methane cycle[J]. Herald of the Russian Academy of Sciences, 2009, 79(3): 237-246.
[16] Shakhova N, Semiletov I, Salyuk A, et al. Extensive methane venting to the atmosphere from sediments of the East Siberian Arctic Shelf[J]. Science, 2010, 327(5 970): 1 246-1 250.
[17] Westbrook G K, Thatcher K E, Rohling E J, et al. Escape of methane gas from the seabed along the West Spitsbergen continental margin[J]. Geophysical Research Letters, 2009, 36(15): L15608,doi:10.1029/2009GL039191.
[18] Gentz T, Damm E, von Deimling J S, et al. A water column study of methane around gas flares located at the West Spitsbergen continental margin[J]. Continental Shelf Research, 2014, 72: 107-118.
[19] Savvichev A, Rusanov I, Pimenov N, et al. Microbial processes of the carbon and sulfur cycles in the Chukchi Sea[J]. Microbiology, 2007, 76(5): 603-613.
[20] He X, Sun L, Xie Z, et al. Sea ice in the Arctic Ocean: Role of shielding and consumption of methane[J]. Atmospheric Environment, 2013, 67: 8-13.
[21] Zhou H, Yin X, Yang Q, et al. Distribution, source and flux of methane in the western Pearl River Estuary and northern South China Sea[J]. Marine Chemistry, 2009, 117(1): 21-31.
[22] Zhang G, Zhang J, Kang Y, et al. Distributions and fluxes of methane in the East China Sea and the Yellow Sea in spring[J]. Journal of Geophysical Research, 2004, 109(C7): C07011, doi:10.1029/2004JC002268.
[23] Tilbrook B D, Karl D M. Methane sources, distributions and sinks from California coastal waters to the oligotrophic North Pacific gyre[J]. Marine Chemistry, 1995, 49(1): 51-64.
[24] Watanabe S, Higashitani N, Tsurushima N, et al. Methane in the western North Pacific[J]. Journal of Oceanography, 1995, 51(1): 39-60.
[25] Forster G, Upstill-Goddard R C, Gist N, et al. Nitrous oxide and methane in the Atlantic Ocean between 50°N and 52°S: Latitudinal distribution and sea-to-air flux[J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2009, 56(15): 964-976.
[26] Oudot C, Jean-Baptiste P, Fourré E, et al. Transatlantic equatorial distribution of nitrous oxide and methane[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2002, 49(7): 1 175-1 193.
[27] Jayakumar D, Naqvi S W A, Narvekar P V, et al. Methane in coastal and offshore waters of the Arabian Sea[J]. Marine Chemistry, 2001, 74(1): 1-13.
[28] Upstill-Goddard R, Barnes J, Owens N J. Nitrous oxide and methane during the 1994 SW monsoon in the Arabian Sea/northwestern Indian Ocean[J]. Journal of Geophysical Research: Oceans (1978-2012), 1999, 104(C12): 30 067-30 084.
[29] Kitidis V, Upstill-Goddard R C, Anderson L G. Methane and nitrous oxide in surface water along the North-West Passage, Arctic Ocean[J]. Marine Chemistry, 2010, 121(1/4): 80-86.
[30] Fisher R, Sriskantharajah S, Lowry D, et al. Arctic methane sources: Isotopic evidence for atmospheric inputs[J]. Geophysical Research Letters, 2011, 38(21): L21803,doi:10.1029/2011GL049319.
[31] Kort E, Wofsy S, Daube B, et al. Atmospheric observations of Arctic Ocean methane emissions up to 82°north[J]. Nature Geoscience, 2012, 5(5): 318-321.
[32] Wanninkhof R. Relationship between wind speed and gas exchange over the ocean[J]. Journal of Geophysical Research: Oceans (1978-2012), 1992, 97(C5): 7 373-7 382.
[33] Bates T S, Kelly K H, Johnson J E, et al. A reevaluation of the open ocean source of methane to the atmosphere[J]. Journal of Geophysical Research, 1996, 101(D3): 6 953-6 961.
[34] Reeburgh W S. Oceanic methane biogeochemistry[J]. Chemical Reviews, 2007, 38(20): 486-513.
[35] Weller D, Law C, Marriner A, et al. Temporal variation of dissolved methane in a subtropical mesoscale eddy during a phytoplankton bloom in the southwest Pacific Ocean[J]. Progress in Oceanography, 2013, 116: 193-206.
[36] Yu Wen, He Jianhua, Li Yiliang, et al. 210 Pb-derived organic carbon deposition flux on the north chukchi shelf[J]. Advances in Polar Science, 2012, 24(4): 391-396. [余雯, 何建华, 李奕良,等. 基于 210 Pb测年法的楚科奇海陆架北缘有机碳沉积通量研究[J]. 极地研究, 2012, 24(4): 391-396.]
[37] Hao Yu, Long Jiangping. Biogeochemical characteristics of organic carbon in surface sediments from the Chukchi Sea[J]. Advances in Marine Science, 2007, 2007, 25(1): 63-72. [郝玉, 龙江平. 北极楚科奇海海底表层沉积物有机碳的生物地球化学特征[J]. 海洋科学进展, 2007, 25(1): 63-72.]
[38] Moran K, Backman J, Brinkhuis H, et al. The Cenozoic palaeoenvironment of the Arctic Ocean[J]. Nature, 2006, 441(7 093): 601-605.
[39] Grebmeier J M, Cooper L W, Feder H M, et al. Ecosystem dynamics of the Pacific-influenced northern Bering and Chukchi Seas in the Amerasian Arctic[J]. Progress in Oceanography, 2006,71(2): 331-361.
[40] He Jianhua, Yu Wen, Yin Mingduan. Study on the burial organic carbon in the sedmients of continental Chukchi Sea[J]. Journal of Oceanography in Taiwan Strait, 2010, 29(2): 277-282. [何建华, 余雯, 尹明端. 楚科奇海陆架有机碳埋藏研究[J]. 台湾海峡, 2010, 29(2): 277-282.]
[41] Chen Min, Huang Yipu, Guo Laodong, et al. The Arctic Ocean: Desert of biological productivity?[J]. Chinese Science Bulletin, 2002,47(9): 707-710. [陈敏, 黄奕普, 郭劳动, 等. 北冰洋: 生物生产力的沙漠?[J]. 科学通报, 2002, 47(9): 707-710.]
[42] Savvichev A, Rusanov I, Yusupov S, et al. The biogeochemical cycle of methane in the coastal zone and littoral of the Kandalaksha Bay of the White Sea[J]. Microbiology, 2004, 73(4):457-468.
[43] Bates T S, Kelly K C, Johnson J E. Concentrations and fluxes of dissolved biogenic gases (DMS, CH 4 , CO, CO 2 ) in the equatorial Pacific during the SAGA 3 experiment[J]. Journal of Geophysical Research, 1993, 98(D9): 16 969-16 977.
[44] Karl D M, Beversdorf L, Björkman K M, et al. Aerobic production of methane in the sea[J]. Nature Geoscience, 2008, 1(7): 473-478.
[45] Karl D M, Tilbrook B D. Production and transport of methane in oceanic particulate organic matter[J]. Nature,1994, 368(21):732-734.
[46] Cynar F, Yayanos J A. Enrichment and characterization of a methanogenic bacterium from the oxic upper layer of the ocean[J]. Current Microbiology, 1991, 23(2): 89-96.
[47] Damm E, Helmke E, Thoms S, et al. Methane production in aerobic oligotrophic surface water in the central Arctic Ocean[J]. Biogeosciences, 2010, 7(3): 1 099-1 108.
[48] Keppler F, Boros M, Frankenberg C, et al. Methane formation in aerobic environments[J]. Environmental Chemistry, 2009, 6(6): 459-465.
[49] Kiene R P. Production and consumption of methane in aquatic systems[M]∥Rogers J E, Whitman W B, eds. Microbial Production and Consumption of Greenhouse Gases: Methane, Nitrogen Oxides and Halomethanes. Washington DC: American Society for Microbiology, 1991: 111-146.
[50] Oremland R S. Methanogenic activity in plankton samples and fish intestines: A mechanism for in situ methanogenesis in oceanic surface waters[J]. Limnology Oceanography, 1979, 24(6): 1 136-1 141.
[51] Alldredge A L, Cohen Y. Can microscale chemical patches persist in the sea? Microelectrode study of marine snow, fecal pellets[J]. Science, 1987, 235(4 789): 689-691.
[52] Sieburth J. Contrary habitats for redox-specific processes: Methanogenesis in oxic waters and oxidation in anoxic waters[C]∥Sleigh M A, ed. Microbes in the Sea. Chichester: Ellis Horwood,1987: 11-38.
[53] Bianchi M, Marty D, Teyssie J, et al. Strictly aerobic and anaerobic-bacteria associated with sinking particulate matter and zooplankton fecal pellets[J]. Marine Ecology Progress Series, 1992, 88(1): 55-60.
[54] Holmes M E, Sansone F J, Rust T M,et al. Methane production, consumption, and air-sea exchange in the open ocean: An Evaluation based on carbon isotopic ratios[J]. Global Biogeochemical Cycles, 2000, 14(1): 1-10.
[55] Ditchfield A K, Wilson S T, Hart M C, et al. Identification of putative methylotrophic and hydrogenotrophic methanogens within sedimenting material and copepod faecal pellets[J]. Aquatic Microbial Ecology, 2012, 67(2): 151-160.
[56] Welsh D T. Ecological significance of compatible solute accumulation by micro-organisms: From single cells to global climate[J]. FEMS Microbiology Reviews, 2000, 24(3): 263-290.
[57] Damm E, Kiene R, Schwarz J, et al. Methane cycling in Arctic shelf water and its relationship with phytoplankton biomass and DMSP[J]. Marine Chemistry, 2008, 109(1): 45-59.
[58] Florez-Leiva L, Damm E, Farías L. Methane production induced by dimethylsulfide in surface water of an upwelling ecosystem[J]. Progress in Oceanography, 2013, 112: 38-48.
[59] Damm E, Thoms S, Kattner G, et al. Coexisting methane and oxygen excesses in nitrate-limited polar water (Fram Strait) during ongoing sea ice melting[J]. Biogeosciences Discussions, 2011, 8(3): 5 179-5 195.
[60] Metcalf W W, Griffin B M, Cicchillo R M, et al. Synthesis of methylphosphonic acid by marine microbes: A source for methane in the aerobic ocean[J]. Science, 2012, 337(6 098): 1 104-1 107.
[61] Ward B, Kilpatrick K, Novelli P, et al. Methane oxidation and methane fluxes in the ocean surface layer and deep anoxic waters[J]. Nature, 1987, 327(6 119): 226-229.
[62] Ward B, Kilpatrick K, Wopat A, et al. Methane oxidation in Saanich Inlet during summer stratification[J]. Continental Shelf Research, 1989, 9(1): 65-75.
[63] Comiso J C, Parkinson C L, Gersten R, et al. Accelerated decline in the Arctic sea ice cover[J]. Geophysical Research Letters, 2008, 35: L01703, doi:10.1029/2007GL031972.
[64] Stroeve J, Holland M M, Meier W,et al. Arctic sea ice decline: Faster than forecast[J]. Geophysical Research Letters, 2007, 34(9): L09501, doi:10.1029/2007GL029703.
[65] Shakhova N, Semiletov I, Leifer I, et al. Geochemical and geophysical evidence of methane release over the East Siberian Arctic Shelf[J]. Journal of Geophysical Research: Oceans, 2010,115(C8): C08007,doi:10.1029/2009JC005602.

[1] 仲雷,葛楠,马耀明,傅云飞,马伟强,韩存博,王显,程美琳. 利用静止卫星估算青藏高原全域地表潜热通量[J]. 地球科学进展, 2021, 36(8): 773-784.
[2] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[3] 王俏懿,马耀明,王宾宾,左洪超. 喜马拉雅南北坡地区地表能量通量及蒸散发量对比分析[J]. 地球科学进展, 2021, 36(8): 810-825.
[4] 高俊峰,苏强. 群落物种多度的分形模型和一般性分布规律的验证与探讨[J]. 地球科学进展, 2021, 36(6): 625-631.
[5] 韦进, 申重阳, 胡敏章, 江颖, 张晓彤, 刘子维. 连续重力观测站测定的中国大陆潮汐因子空间分布特征[J]. 地球科学进展, 2021, 36(5): 490-499.
[6] 单森,齐远志,罗春乐,付文静,薛跃君,王旭晨. 中国主要河流输送陆源碳的同位素特征及影响因素[J]. 地球科学进展, 2020, 35(9): 948-961.
[7] 赵仁杰,鄢全树,张海桃,关义立,葛振敏,袁龙,闫施帅. 全球俯冲沉积物组分及其地质意义[J]. 地球科学进展, 2020, 35(8): 789-803.
[8] 张晓辉,彭亚兰,黄根华. 南海碳源汇的区域与季节变化特征及控制因素研究进展[J]. 地球科学进展, 2020, 35(6): 581-593.
[9] 萧凌波. 17361911年华北饥荒的时空分布及其与气候、灾害、收成的关系[J]. 地球科学进展, 2020, 35(5): 478-487.
[10] 刘柏妤, 张虎才, 常凤琴, 张扬, 张晓楠, 冯仡哲, 李华勇. 茈碧湖现代沉积特征及其环境指示意义[J]. 地球科学进展, 2020, 35(2): 198-208.
[11] 郭彦龙,赵泽芳,乔慧捷,王然,卫海燕,王璐坤,顾蔚,李新. 物种分布模型面临的挑战与发展趋势[J]. 地球科学进展, 2020, 35(12): 1292-1305.
[12] 孙义博,苏德,全占军,商豪律,耿冰,林兴稳,荆平平,包扬,赵艳华,杨巍. 无人机涡动相关通量观测技术研究综述[J]. 地球科学进展, 2019, 34(8): 842-854.
[13] 宋朝清,刘伟,陆海波,袁文平. 基于通量测量的稻田甲烷排放特征及影响因素研究[J]. 地球科学进展, 2019, 34(11): 1141-1151.
[14] 祁建华, 李孟哲, 高冬梅, 甄毓, 张大海. 沙尘天气对大气生物气溶胶中微生物浓度、特性和分布的影响[J]. 地球科学进展, 2018, 33(6): 568-577.
[15] 张翔, 陈能成, 胡楚丽, 彭小婷. 1983—2015年我国农业区域三类骤旱时空分布特征分析[J]. 地球科学进展, 2018, 33(10): 1048-1057.
阅读次数
全文


摘要