Please wait a minute...
img img
高级检索
地球科学进展  2014, Vol. 29 Issue (12): 1355-1361    DOI: 10.11867/j.issn.1001-8166.2014.12.1355
综述与评述     
北冰洋CH4研究进展
李玉红, 詹力扬*, 陈立奇
国家海洋局海洋—大气化学与全球变化重点实验室,国家海洋局第三海洋研究所,福建 厦门 361005
Advances on Studies of Methane in the Arctic Ocean
Li Yuhong, Zhan Liyang, Chen Liqi
Key Laboratory of Global Change and Marine-Atmospheric Chemistry of State Oceanic Administration, Third Institute of Oceanography, SOA, Xiamen, 361005, China
 全文: PDF(1252 KB)  
摘要:

甲烷(CH4)是一种重要的温室气体,工业革命以来,大气中CH4浓度已增长了2~3倍。北冰洋沿岸冻土地带和冰川地质区域下埋藏了巨量的CH4储量,在全球气候变化背景下,北冰洋快速增长的CH4释放通量和可能产生的后果引起了人们的广泛关注。综述了北冰洋CH4的研究现状,着重介绍了北冰洋CH4的分布特征、通量及其生物地球化学行为,最后探讨了该研究领域中存在的问题。

关键词: 北冰洋溶解甲烷生物地球化学行为分布通量    
Abstract:

Methane(CH4) is an important greenhouse gas, CH4 concentrations in atmosphere hve increased by 2-3 times since the Industrial Revolution. Considering the huge CH4 storage in the Arctic Ocean, the fast increasing flux and their consequences are attracting more and more attention. This paper summarized the advances in the study of CH4 in the Arctic Ocean, especially the distribution pattern and air-sea flux and its biogeochemical cycle in the Arctic Ocean. It also presented the research prospect for the future.

Key words: Dissolved methane    Flux    Arctic Ocean.    Biogeochemical cycle    Distribution
收稿日期: 2014-04-16 出版日期: 2014-12-20
:  P727  
基金资助:

国家海洋局第三海洋研究所基本科研业务费专项资金项目“海水中CH-4走航观测系统的研发”(编号:海三科2013004)资助

通讯作者: 詹力扬(1977-),男,福建厦门人,副研究员,主要从事极区温室气体研究.      E-mail: zhanliyang@tio.org.cn
作者简介: 李玉红(1987-),男,山西高平人,研究实习员,主要从事极区温室气体研究.E-mail:liyuhong@tio.org.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
陈立奇
李玉红
詹力扬

引用本文:

李玉红, 詹力扬, 陈立奇. 北冰洋CH4研究进展[J]. 地球科学进展, 2014, 29(12): 1355-1361.

Li Yuhong, Zhan Liyang, Chen Liqi. Advances on Studies of Methane in the Arctic Ocean. Advances in Earth Science, 2014, 29(12): 1355-1361.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2014.12.1355        http://www.adearth.ac.cn/CN/Y2014/V29/I12/1355

[1] IPCC. Climate change 2007—The physical science basis[M]∥Working Group I Contribution to the Fourth assessment Report. Cambridge:Cambridge University Press, 2007.
[2] IPCC. The scientific basis[M]∥Contribution of Working Group I to the Third Assessment Report. Cambridge: Cambridge University Press, 2001.
[3] Wang Weibo, Zhao Jinping. Accumulation sea ice concentration and its action on understanding Arctic Sea ice dramatic change[J]. Advances in Earth Science, 2014, 29(6): 712-722. [王维波, 赵进平. 累积海冰密集度及其在认识北极海冰快速变化的作用[J]. 地球科学进展, 2014, 29(6):712-722.]
[4] Shao Qiuli, Zhao Jinping. On the deep water of the Nordic Sea[J]. Advances in Earth Science, 2014, 29(1): 42-55. [邵秋丽, 赵进平. 北欧海深层水的研究进展[J]. 地球科学进展, 2014,29(1): 42-55.]
[5] Liu J M, Song M R, Horton R M, et al. Reducing spread in climate model projections of a september ice-free Arctic[J]. Proceedings of the National Academy of Sciences, 2013, 110(31): 12 571-12 576.
[6] Gramberg I, Kulakov Y N, Pogrebitsky Y E, et al. Arctic Oil and Gas Super Basin[C]. London: World Petroleum Congress, 1983.
[7] Anthony K M W, Roberts G, Rapsomanikis S, et al. Geologic methane seeps along boundaries of Arctic permafrost thaw and melting glaciers[J]. Nature Geoscience, 2012, 5(6): 419-426.
[8] Zhu Renbin, Sun Liguang. Concentrations and emissions of greenhouse gases and climatic change in polar region[J]. Advances in Polar Science, 2002, 24(4): 79-86. [朱仁斌, 孙立广. 极区温室气体浓度和排放与气候变化[J]. 极地研究, 2002, 24(4): 79-86.]
[9] Kvenvolden K, Lilley M D, Lorenson T D, et al. The Beaufort Sea continental shelf as a seasonal source of atmospheric methane[J]. Geophysical Research Letters, 1993, 20(22): 2 459-2 462.
[10] Lammers S, Suess E, Hovland M. A large methane plume east of Bear Island (Barents Sea): Implications for the marine methane cycle[J]. Geologische Rundschau, 1995, 84(1): 59-66.
[11] Damm E, Mackensen A, Budéus G, et al. Pathways of methane in seawater: Plume spreading in an Arctic shelf environment (SW-Spitsbergen)[J]. Continental Shelf Research, 2005, 25(12/13): 1 453-1 472.
[12] Damm E, Schauer U, Rudels B, et al. Excess of bottom-released methane in an Arctic Shelf Sea polynya in winter[J]. Continental Shelf Research, 2007, 27(12): 1 692-1 701.
[13] Shakhova N, Semiletov I, Panteleev G. The distribution of methane on the Siberian Arctic shelves: Implications for the marine methane cycle[J]. Geophysical Research Letters, 2005, 32: 9 601.
[14] Shakhova N, Semiletov I. Methane release and coastal environment in the East Siberian Arctic Shelf[J]. Journal of Marine Systems, 2007, 66(1/4): 227-243.
[15] Shakhova N, Ivanovich V. The contribution of the East Siberian shelf to the modern methane cycle[J]. Herald of the Russian Academy of Sciences, 2009, 79(3): 237-246.
[16] Shakhova N, Semiletov I, Salyuk A, et al. Extensive methane venting to the atmosphere from sediments of the East Siberian Arctic Shelf[J]. Science, 2010, 327(5 970): 1 246-1 250.
[17] Westbrook G K, Thatcher K E, Rohling E J, et al. Escape of methane gas from the seabed along the West Spitsbergen continental margin[J]. Geophysical Research Letters, 2009, 36(15): L15608,doi:10.1029/2009GL039191.
[18] Gentz T, Damm E, von Deimling J S, et al. A water column study of methane around gas flares located at the West Spitsbergen continental margin[J]. Continental Shelf Research, 2014, 72: 107-118.
[19] Savvichev A, Rusanov I, Pimenov N, et al. Microbial processes of the carbon and sulfur cycles in the Chukchi Sea[J]. Microbiology, 2007, 76(5): 603-613.
[20] He X, Sun L, Xie Z, et al. Sea ice in the Arctic Ocean: Role of shielding and consumption of methane[J]. Atmospheric Environment, 2013, 67: 8-13.
[21] Zhou H, Yin X, Yang Q, et al. Distribution, source and flux of methane in the western Pearl River Estuary and northern South China Sea[J]. Marine Chemistry, 2009, 117(1): 21-31.
[22] Zhang G, Zhang J, Kang Y, et al. Distributions and fluxes of methane in the East China Sea and the Yellow Sea in spring[J]. Journal of Geophysical Research, 2004, 109(C7): C07011, doi:10.1029/2004JC002268.
[23] Tilbrook B D, Karl D M. Methane sources, distributions and sinks from California coastal waters to the oligotrophic North Pacific gyre[J]. Marine Chemistry, 1995, 49(1): 51-64.
[24] Watanabe S, Higashitani N, Tsurushima N, et al. Methane in the western North Pacific[J]. Journal of Oceanography, 1995, 51(1): 39-60.
[25] Forster G, Upstill-Goddard R C, Gist N, et al. Nitrous oxide and methane in the Atlantic Ocean between 50°N and 52°S: Latitudinal distribution and sea-to-air flux[J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2009, 56(15): 964-976.
[26] Oudot C, Jean-Baptiste P, Fourré E, et al. Transatlantic equatorial distribution of nitrous oxide and methane[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2002, 49(7): 1 175-1 193.
[27] Jayakumar D, Naqvi S W A, Narvekar P V, et al. Methane in coastal and offshore waters of the Arabian Sea[J]. Marine Chemistry, 2001, 74(1): 1-13.
[28] Upstill-Goddard R, Barnes J, Owens N J. Nitrous oxide and methane during the 1994 SW monsoon in the Arabian Sea/northwestern Indian Ocean[J]. Journal of Geophysical Research: Oceans (1978-2012), 1999, 104(C12): 30 067-30 084.
[29] Kitidis V, Upstill-Goddard R C, Anderson L G. Methane and nitrous oxide in surface water along the North-West Passage, Arctic Ocean[J]. Marine Chemistry, 2010, 121(1/4): 80-86.
[30] Fisher R, Sriskantharajah S, Lowry D, et al. Arctic methane sources: Isotopic evidence for atmospheric inputs[J]. Geophysical Research Letters, 2011, 38(21): L21803,doi:10.1029/2011GL049319.
[31] Kort E, Wofsy S, Daube B, et al. Atmospheric observations of Arctic Ocean methane emissions up to 82°north[J]. Nature Geoscience, 2012, 5(5): 318-321.
[32] Wanninkhof R. Relationship between wind speed and gas exchange over the ocean[J]. Journal of Geophysical Research: Oceans (1978-2012), 1992, 97(C5): 7 373-7 382.
[33] Bates T S, Kelly K H, Johnson J E, et al. A reevaluation of the open ocean source of methane to the atmosphere[J]. Journal of Geophysical Research, 1996, 101(D3): 6 953-6 961.
[34] Reeburgh W S. Oceanic methane biogeochemistry[J]. Chemical Reviews, 2007, 38(20): 486-513.
[35] Weller D, Law C, Marriner A, et al. Temporal variation of dissolved methane in a subtropical mesoscale eddy during a phytoplankton bloom in the southwest Pacific Ocean[J]. Progress in Oceanography, 2013, 116: 193-206.
[36] Yu Wen, He Jianhua, Li Yiliang, et al. 210 Pb-derived organic carbon deposition flux on the north chukchi shelf[J]. Advances in Polar Science, 2012, 24(4): 391-396. [余雯, 何建华, 李奕良,等. 基于 210 Pb测年法的楚科奇海陆架北缘有机碳沉积通量研究[J]. 极地研究, 2012, 24(4): 391-396.]
[37] Hao Yu, Long Jiangping. Biogeochemical characteristics of organic carbon in surface sediments from the Chukchi Sea[J]. Advances in Marine Science, 2007, 2007, 25(1): 63-72. [郝玉, 龙江平. 北极楚科奇海海底表层沉积物有机碳的生物地球化学特征[J]. 海洋科学进展, 2007, 25(1): 63-72.]
[38] Moran K, Backman J, Brinkhuis H, et al. The Cenozoic palaeoenvironment of the Arctic Ocean[J]. Nature, 2006, 441(7 093): 601-605.
[39] Grebmeier J M, Cooper L W, Feder H M, et al. Ecosystem dynamics of the Pacific-influenced northern Bering and Chukchi Seas in the Amerasian Arctic[J]. Progress in Oceanography, 2006,71(2): 331-361.
[40] He Jianhua, Yu Wen, Yin Mingduan. Study on the burial organic carbon in the sedmients of continental Chukchi Sea[J]. Journal of Oceanography in Taiwan Strait, 2010, 29(2): 277-282. [何建华, 余雯, 尹明端. 楚科奇海陆架有机碳埋藏研究[J]. 台湾海峡, 2010, 29(2): 277-282.]
[41] Chen Min, Huang Yipu, Guo Laodong, et al. The Arctic Ocean: Desert of biological productivity?[J]. Chinese Science Bulletin, 2002,47(9): 707-710. [陈敏, 黄奕普, 郭劳动, 等. 北冰洋: 生物生产力的沙漠?[J]. 科学通报, 2002, 47(9): 707-710.]
[42] Savvichev A, Rusanov I, Yusupov S, et al. The biogeochemical cycle of methane in the coastal zone and littoral of the Kandalaksha Bay of the White Sea[J]. Microbiology, 2004, 73(4):457-468.
[43] Bates T S, Kelly K C, Johnson J E. Concentrations and fluxes of dissolved biogenic gases (DMS, CH 4 , CO, CO 2 ) in the equatorial Pacific during the SAGA 3 experiment[J]. Journal of Geophysical Research, 1993, 98(D9): 16 969-16 977.
[44] Karl D M, Beversdorf L, Björkman K M, et al. Aerobic production of methane in the sea[J]. Nature Geoscience, 2008, 1(7): 473-478.
[45] Karl D M, Tilbrook B D. Production and transport of methane in oceanic particulate organic matter[J]. Nature,1994, 368(21):732-734.
[46] Cynar F, Yayanos J A. Enrichment and characterization of a methanogenic bacterium from the oxic upper layer of the ocean[J]. Current Microbiology, 1991, 23(2): 89-96.
[47] Damm E, Helmke E, Thoms S, et al. Methane production in aerobic oligotrophic surface water in the central Arctic Ocean[J]. Biogeosciences, 2010, 7(3): 1 099-1 108.
[48] Keppler F, Boros M, Frankenberg C, et al. Methane formation in aerobic environments[J]. Environmental Chemistry, 2009, 6(6): 459-465.
[49] Kiene R P. Production and consumption of methane in aquatic systems[M]∥Rogers J E, Whitman W B, eds. Microbial Production and Consumption of Greenhouse Gases: Methane, Nitrogen Oxides and Halomethanes. Washington DC: American Society for Microbiology, 1991: 111-146.
[50] Oremland R S. Methanogenic activity in plankton samples and fish intestines: A mechanism for in situ methanogenesis in oceanic surface waters[J]. Limnology Oceanography, 1979, 24(6): 1 136-1 141.
[51] Alldredge A L, Cohen Y. Can microscale chemical patches persist in the sea? Microelectrode study of marine snow, fecal pellets[J]. Science, 1987, 235(4 789): 689-691.
[52] Sieburth J. Contrary habitats for redox-specific processes: Methanogenesis in oxic waters and oxidation in anoxic waters[C]∥Sleigh M A, ed. Microbes in the Sea. Chichester: Ellis Horwood,1987: 11-38.
[53] Bianchi M, Marty D, Teyssie J, et al. Strictly aerobic and anaerobic-bacteria associated with sinking particulate matter and zooplankton fecal pellets[J]. Marine Ecology Progress Series, 1992, 88(1): 55-60.
[54] Holmes M E, Sansone F J, Rust T M,et al. Methane production, consumption, and air-sea exchange in the open ocean: An Evaluation based on carbon isotopic ratios[J]. Global Biogeochemical Cycles, 2000, 14(1): 1-10.
[55] Ditchfield A K, Wilson S T, Hart M C, et al. Identification of putative methylotrophic and hydrogenotrophic methanogens within sedimenting material and copepod faecal pellets[J]. Aquatic Microbial Ecology, 2012, 67(2): 151-160.
[56] Welsh D T. Ecological significance of compatible solute accumulation by micro-organisms: From single cells to global climate[J]. FEMS Microbiology Reviews, 2000, 24(3): 263-290.
[57] Damm E, Kiene R, Schwarz J, et al. Methane cycling in Arctic shelf water and its relationship with phytoplankton biomass and DMSP[J]. Marine Chemistry, 2008, 109(1): 45-59.
[58] Florez-Leiva L, Damm E, Farías L. Methane production induced by dimethylsulfide in surface water of an upwelling ecosystem[J]. Progress in Oceanography, 2013, 112: 38-48.
[59] Damm E, Thoms S, Kattner G, et al. Coexisting methane and oxygen excesses in nitrate-limited polar water (Fram Strait) during ongoing sea ice melting[J]. Biogeosciences Discussions, 2011, 8(3): 5 179-5 195.
[60] Metcalf W W, Griffin B M, Cicchillo R M, et al. Synthesis of methylphosphonic acid by marine microbes: A source for methane in the aerobic ocean[J]. Science, 2012, 337(6 098): 1 104-1 107.
[61] Ward B, Kilpatrick K, Novelli P, et al. Methane oxidation and methane fluxes in the ocean surface layer and deep anoxic waters[J]. Nature, 1987, 327(6 119): 226-229.
[62] Ward B, Kilpatrick K, Wopat A, et al. Methane oxidation in Saanich Inlet during summer stratification[J]. Continental Shelf Research, 1989, 9(1): 65-75.
[63] Comiso J C, Parkinson C L, Gersten R, et al. Accelerated decline in the Arctic sea ice cover[J]. Geophysical Research Letters, 2008, 35: L01703, doi:10.1029/2007GL031972.
[64] Stroeve J, Holland M M, Meier W,et al. Arctic sea ice decline: Faster than forecast[J]. Geophysical Research Letters, 2007, 34(9): L09501, doi:10.1029/2007GL029703.
[65] Shakhova N, Semiletov I, Leifer I, et al. Geochemical and geophysical evidence of methane release over the East Siberian Arctic Shelf[J]. Journal of Geophysical Research: Oceans, 2010,115(C8): C08007,doi:10.1029/2009JC005602.

[1] 马其琦, 柯长青. 江苏近海有色可溶有机物时空分布特征[J]. 地球科学进展, 2017, 32(5): 524-534.
[2] 黄奇波, 覃小群, 刘朋雨, 张连凯, 苏春田. 非岩溶水和硫酸参与溶蚀对湘南地区地下河流域岩溶碳汇通量的影响[J]. 地球科学进展, 2017, 32(3): 307-318.
[3] 史忠林, 文安邦, 严冬春, 龙翼, 周萍. 7Be法估算土壤侵蚀速率若干问题的探讨[J]. 地球科学进展, 2016, 31(9): 885-893.
[4] 孙晓霞. 海洋微塑料生态风险研究进展与展望[J]. 地球科学进展, 2016, 31(6): 560-566.
[5] 曹沛雨, 张雷明, 李胜功, 张军辉. 植被物候观测与指标提取方法研究进展[J]. 地球科学进展, 2016, 31(4): 365-376.
[6] 陈志敏, 严松宏, 赵德安, 余云燕. 青藏地区地应力分布规律研究[J]. 地球科学进展, 2015, 30(8): 915-921.
[7] 黄鹏, 陈立奇, 蔡明刚. 全球海洋人为碳储量估算及时空分布研究进展[J]. 地球科学进展, 2015, 30(8): 952-959.
[8] 刘军, 于志刚, 臧家业, 孙涛, 赵晨英, 冉祥滨. 黄渤海有机碳的分布特征及收支评估研究[J]. 地球科学进展, 2015, 30(5): 564-578.
[9] 韩钦臣, 康建成, 王国栋, 朱炯. 基于海洋分析资料的吕宋海峡水交换的月际变化特征[J]. 地球科学进展, 2015, 30(5): 609-619.
[10] 李佳霖, 秦松. 海洋微微型蓝细菌分子生态学研究进展[J]. 地球科学进展, 2015, 30(4): 477-486.
[11] 王晓宇, 赵进平, 李涛, 钟文理, 矫玉田. 2012年夏季挪威海和格陵兰海水文特征分析[J]. 地球科学进展, 2015, 30(3): 346-356.
[12] 蒲俊兵, 蒋忠诚, 袁道先, 章程. 岩石风化碳汇研究进展:基于IPCC 第五次气候变化评估报告的分析[J]. 地球科学进展, 2015, 30(10): 1081-1090.
[13] 段金龙, 张学雷, 李卫东, 李滨. 土壤多样性理论与方法在中国的应用与发展[J]. 地球科学进展, 2014, 29(9): 995-1002.
[14] 简阔, 傅雪海, 王可新, 张玉贵. 中国长焰煤物性特征及其煤层气资源潜力[J]. 地球科学进展, 2014, 29(9): 1065-1074.
[15] 刘花台, 郭占荣. 海底地下水排泄的研究进展[J]. 地球科学进展, 2014, 29(7): 774-785.