地球科学进展 ›› 2010, Vol. 25 ›› Issue (8): 820 -826. doi: 10.11867/j.issn.1001-8166.2010.08.0820

综述与评述 上一篇    下一篇

河川径流遥感监测研究进展
卢善龙 1,吴炳方 1*,闫娜娜 1,李发鹏 1,文美平 1,王京 2   
  1. 1. 中国科学院遥感应用研究所,北京 100101;
    2. 辽宁工程技术大学测绘与地理科学学院, 辽宁 阜新 123000
  • 收稿日期:2010-02-15 修回日期:2010-04-12 出版日期:2010-08-10
  • 通讯作者: 吴炳方(1962-),男, 江西玉山人,研究员, 主要从事农业、水资源、生态环境遥感研究. E-mail:wubf@irsa.ac.cn
  • 基金资助:

    中国科学院知识创新工程重大项目“重大工程生态环境效应遥感监测与评估”(编号:KZCX1-YW-08-03)资助

Progress in River Runoff Monitoring by Remote Sensing

Lu Shanlong 1, Wu Bingfang 1, Yan Nana 1, Li Fapeng 1, Wen Meiping 1, Wang Jing 2   

  1. 1. Institute of Remote Sensing Applications, Chinese Academy of Sciences, Beijing 100101, China;
    2. School of Geomatics, Liaoning Technical University,  Fuxin 123000, China
  • Received:2010-02-15 Revised:2010-04-12 Online:2010-08-10 Published:2010-08-10

河川径流参数是用于地表水资源评估、全球变化监测和生态环境保护的基础数据。现有的河川径流监测数据基于水文监测站点获取。近年来,受经济和政治原因的影响,全球水文监测站点在逐渐减少。随着全球变化研究对区域乃至全球水文监测数据需求的增加,监测站点有限及监测数据格式多样等问题逐渐凸显。过去15年,卫星遥感技术在河川径流监测领域的研究和应用实践,使上述问题的解决成为了可能。总结了河川径流遥感监测方法和技术研究进展,包括地基高低频雷达、航空航天雷达和多光谱卫星遥感监测3个方面;介绍了全球大型河川径流与湖泊水体动态监测重大应用成果及未来研究计划。指出在未来具有全天时、全天候,高时空分辨率,以及多水文要素探测能力遥感卫星发射之前,应充分利用遥感野外观测实验,完善河川径流监测技术方法,并综合应用已有高时空分辨率的多光谱和微波遥感数据,开展径流监测应用研究。

River runoff parameters are the basic data used for surface water resource assessment, global change monitoring and ecological environment protection. The traditional river runoff parameters are obtained by gauging stations. However, due to the economic and political reasons, in recent years, the global runoff gauging stations has gradually decreased. As the increasing demand of regional and global hydrological monitoring network construction for global change research, the issues of limited gauging stations and a variety of data formats become apparent. Over the past 15 years, the research and application of satellite remote sensing technologies to  river runoff monitoring have made it possible to resolve the above-mentioned issues. The paper summarized the progress of the methods and technologies about the river runoff remote sensing monitoring including the ground high-frequency and low-frequency radar, aerospace radar and multi-spectral satellite remote sensing, and introduced the dynamic monitoring results of the world′s large river runoff and lake water, and the future research plans. It pointed out that, before the hydrological remote sensing satellites with the capability of monitoring the earth′s surface in all weather conditions, day or night, and with high spatial and temporal resolution, was launched, it is necessary to make great use of the field remote sensing experiment to improve the river runoff monitoring methods, and to integratedly apply the current high spatial and temporal multi-spectral and microwave remote sensing data to monitor the river runoff.

中图分类号: 

[1] Hundecha Y, Bárdossy A. Modeling of the effect of land use changes on the runoff generation of a river basin through parameter regionalization of a watershed model[J].Journal of Hydrology,2004, 292: 281-295.
[2] Wu K S, Johnston C A.Hydrologic response to climatic variability in a great lakes watershed: A case study with the SWAT model[J].Journal of Hydrology,2007, 337: 187-199.
[3] Wang G Q, Zhang J Y, He R M, et al. Runoff reduction due to environmental changes in the Sanchuanhe river basin[J]. International Journal of Sediment Research,2008, 23: 174-180.
[4] Zhang Q, Xu C Y, Becker S, et al. Sediment and runoff changes in the Yangtze river basin during past 50 years[J].Journal of Hydrology,2006, 331: 511-523.
[5] Zhang S, Lu X X, Higgitt D L, et al. Recent changes of water discharge and sediment load in the Zhujiang(Pearl River) basin, China[J].Global and Planetary Change,2008, 60: 365-380.
[6] Yang Y, Tian F. Abrupt change of runoff and its major driving factors in Haihe river catchment, China[J].Journal of Hydrology,2009, 374:373-383.
[7] Hirsch M, Costa E J U S. Stream flow measurement and data dissemination improve[J].EOS Transactions, American Geophysical Union,2004, 85(20): 197-203.
[8] Fu L L, Alsforf D, Rodriguez E, et al. The SWOT (Surface Water and Ocean Topography) Mission: Spaceborne Radar Interferometry for Oceanographic and Hydrological Applications[C]. White paper submitted to OCEANOBS′09 Conference, 2009.
[9] Alsdorf D E, Melack J M, Dunne T, et al. Interferometric radarmeasurements of water level changes on the Amazon flood plain[J].Nature,2000, 404: 174-176.
[10] Huang Yue, Chen Xi, Bao Anming, et al. Daily flow modeling in arid ungauged basin[J].Advances in Water Science,2009, 20(3): 332-336.[黄粤, 陈曦, 包安明,等.干旱区资料稀缺流域日径流过程模拟[J]. 水科学进展, 2009, 20(3): 332-336.]
[11] Fekete B M, Vörösmarty C J. The Current Status of Global River Discharge Monitoring and Potential New Technologies Complementing Traditional Discharge Measurements Predictions in Ungauged Basins: PUB Kick-off (Proceedings of the PUB Kick-off meeting held in Brasilia, 20-22 November 2002)[C]. IAHS Publication, 2007:309.
[12] Brakenridge G R, Nghiem S V, Anderson E, et al. Space-based measurement of river runoff[J].EOS Transactions, American Geophysical Union,2005, 86(19): 185-192.
[13] McCabe M F, Wood E F, Wójcik R, et al. Hydrological consistency using multi-sensor remote sensing data for water and energy cycle studies[J]. Remote Sensing of Environment,2008, 112: 430-444.
[14] Simpson M. Discharge Measurements Using a Broad-Bank Acoustic Doppler Current Profiler[R]. Washington DC: US Geological Survey, 2001:123.
[15] Costa J E, Cheng R T, Haeni F P, et al. Use of radars to monitor stream discharge by noncontact methods[J].Water Resources Research,2006, 42, W07422, doi:10.1029 /2005WR004430.
[16] Costa J E, Spicer K R, Cheng R T, et al. Measuring stream discharge by noncontact methods: A proof-of-concept experiment[J].Geophysical Research Letters,2000, 27(4): 553-556.
[17] Melcher N B, Costa J E, Haeni F P, et al. River discharge measurements by using helicoptermounted radar[J].Geophysical Research Letters, 2002, 29(22), 2084, doi:1010.29/2002GL015525.
[18] Bjerklie D M, Dingman S L, Vorosmarty C J, et al. Evaluating the potential for measuring river discharge from space[J]. Journal of Hydrology,2003, 278: 17-38.
[19] Smith L C, Isacks B L, Forster R R, et al. Estimation of discharge from braided glacial rivers using ERS 1 synthetic aperture radar: First results[J].Water Resources Research,1995, 31(5): 1 325-1 329.
[20] Smith, L C, Isacks B L, Bloom A L. Estimation of discharge from three braided rivers using synthetic aperture radar satellite imagery: Potential application to ungaged basins[J].Water Resources Research,1996, 32(7): 2 021-2 034.
[21] Brakenridge G R,Knox J C,Paylor E D,et al.Radar remote sensing aids study of the great flood of 1993[J].EOS Transactions,American Geophysical Union,1994,75(45):521-527.
[22] Sippel S J, Hamilton S K, Melack J M, et al. Determination of inundation area in the Amazon river floodplain using SMMR 37 GHz polarization difference[J].Remote Sensing Environment,1994, 48: 70-76.
[23] Brakenridge G R, Nghiem S V, Anderson E, et al. Orbital microwave measurement of river discharge and ice status[J].Water Resources Research,2007, 43, W04405, doi:10.1029/2006WR005238.
[24] Bjerklie D M, Moller D, Smith L C, et al. Estimating discharge in rivers using remotely sensed hydraulic information[J].Journal of Hydrology,2005, 309: 191-209.
[25] Goldstein R M, Barnett T P, Zebker H A. Remote sensing of ocean currents[J].Science,1989, 246: 1 282-1 285.
[26] Smith L C. Satellite remote sensing of river inundation area, stage, and discharge: A review[J].Hydrological Processes,1997, 11: 1 427-1 439.
[27] Birkett C M. Contribution of the TOPEX NASA radar altimeter to the global monitoring of large rivers and wetlands[J].Water Resources Research,1998, 34(5): 1 223-1 239.
[28] Medina C, GomezEnri J, Alonso J J, et al. Water volume variations in lake Izabal (Guatemala) from in-situ measurements and ENVISAT Radar Altimeter (RA-2) and Advanced Synthetic Aperture Radar (ASAR) data products[J]. Journal of Hydrology, 2010,382(114):34-48.
[29] Smith L C, Pavelsky T M. Estimation of river discharge, propagation speed, and hydraulic geometry from space: Lena river, Siberia[J]. Water resources research, 2008, 44, W03427, doi:10.1029/2007WR006133.
[30] Xu H Q.Modification of normalized difference water index (NDWI) to enhance open water features in remotely sensed imagery[J].International Journal of Remote Sensing,2006, 27: 3 025-3 033.
[31] Ouma Y O, Tateishi R. A water index for rapid mapping of shoreline changes of five east African Rift Valley lakes: An empirical analysis using Landsat TM and ETM+ data[J].International Journal of Remote Sensing,2006, 27: 3 153-3 181.
[32] Rogers A S, Kearney M S. Reducing signature variability in unmixing coastal marsh thematic mapper scenes using spectral indices[J].International Journal of Remote Sensing,2004, 20: 2 317-2 335.
[33] Xiao X M, Boles S, Liu J Y, et al. Mapping paddy rice agriculture in southern China using multi-temporal MODIS images[J].Remote Sensing of Environment,2005, 95: 480-492.
[34] Sivanpillai R, Miller S N. Improvements in mapping water bodies using ASTER data[J].Ecological Informatics,2010,5(1):73-78.[35] Deng Jingsong, Wang Ke, Li Jun, et al. Study on the automatic extraction of water body information from SPOT 5 images using decision tree algorithm[J].Journal of Zhejiang University (Agriculture & Life Science),2005, 31(2): 171-174.[邓劲松, 王珂, 李君,等.决策树方法从SPOT 5卫星影像中自动提取水体信息研究[J]. 浙江大学学报:农业与生命科学版, 2005, 31(2): 171-174.]
[36] Brakenridge R,Anderson E. MODIS-based flood detection, mapping and measurement: The potential for operational hydrological applications[C]//Marsalek J, et al,eds.Transboundary Floods: Reducing Risks through Flood Management.The Netherlands: Springer,2006:1-12.
[37] Alsdorf D E, Lettenmaier D P. Tracking fresh water from space[J].Science,2003, 301: 1 491-1 494.
[38] Li Xin,Ma Mingguo,Wang Jian, et al. Simultaneous remote sensing and ground-based experiment in the Heihe river basin:Scientific objectives and experiment design[J].Advances in Earth Science,2008, 23(9): 898-914.[李新,马明国,王建,等.黑河流域遥感—地面观测同步试验科学目标与试验方案[J].地球科学进展,2008,23 (9):898-914.]

[1] 时连强,郭俊丽,刘海江,叶清华. Argus系统在我国海滩研究中的应用进展与展望[J]. 地球科学进展, 2019, 34(5): 552-560.
[2] 李文龙,高燕. MEMS传感器在锚杆加固边坡监测中的应用研究[J]. 地球科学进展, 2019, 34(4): 439-448.
[3] 江笑薇, 白建军, 刘宪锋. 基于多源信息的综合干旱监测研究进展与展望[J]. 地球科学进展, 2019, 34(3): 275-287.
[4] 陈泽青,刘诚,胡启后,洪茜茜,刘浩然,邢成志,苏文静. 大气成分的遥感监测方法与应用[J]. 地球科学进展, 2019, 34(3): 255-264.
[5] 窦芳丽,陆其峰,郭杨. 全天候卫星微波观测资料变分同化研究进展[J]. 地球科学进展, 2019, 34(11): 1120-1130.
[6] 黄强,陈子燊,唐常源,李绍峰. 珠江流域重大干旱事件时空发展过程反演研究[J]. 地球科学进展, 2019, 34(10): 1050-1059.
[7] 肖雄新, 张廷军. 基于被动微波遥感的积雪深度和雪水当量反演研究进展[J]. 地球科学进展, 2018, 33(6): 590-605.
[8] 胡雨豪, 袁路, 马东涛, 李梅. 泥石流次声警报研究进展[J]. 地球科学进展, 2018, 33(6): 606-613.
[9] 高兴军, 徐薇薇, 余义常, 李艳然, 李蕾. 智能化学示踪剂技术及其在油藏监测中的应用[J]. 地球科学进展, 2018, 33(5): 532-544.
[10] 李青, 雷连发, 王振会, 魏鸣, 李东帅. 雷电流热效应的遥感观测研究进展[J]. 地球科学进展, 2017, 32(5): 481-487.
[11] 邵全琴, 樊江文, 刘纪远, 杨帆, 刘华, 杨秀春, 许明祥, 侯鹏, 郭兴健, 黄麟, 李愈哲. 重大生态工程生态效益监测与评估研究[J]. 地球科学进展, 2017, 32(11): 1174-1182.
[12] 郭瑞芳, 刘元波. 多传感器联合反演高分辨率降水方法综述[J]. 地球科学进展, 2015, 30(8): 891-903.
[13] 张强, 姚玉璧, 李耀辉, 罗哲贤, 张存杰, 李栋梁, 王润元, 王劲松, 陈添宇, 肖国举, 张书余, 王式功, 郭铌, 白虎志, 谢金南, 杨兴国, 董安祥, 邓振镛, 柯晓新, 徐国昌. 中国西北地区干旱气象灾害监测预警与减灾技术研究进展及其展望[J]. 地球科学进展, 2015, 30(2): 196-211.
[14] 吴珊珊, 姚治君, 姜丽光, 刘兆飞. 现代冰川体积变化研究方法综述[J]. 地球科学进展, 2015, 30(2): 237-246.
[15] 杨扬, 马劲风, 李琳. CO 2地质封存四维多分量地震监测技术进展[J]. 地球科学进展, 2015, 30(10): 1119-1126.
阅读次数
全文


摘要