Please wait a minute...
img img
高级检索
地球科学进展  2017, Vol. 32 Issue (8): 859-866    DOI: 10.11867/j.issn.1001-8166.2017.08.0859
应用地球化学专辑     
中国陆地生态系统植硅体碳汇研究进展
潘文杰1, 2, 杨孝民1, 张晓东1, 李自民3, 杨石磊1, 吴云涛1, 郝倩1, 宋照亮1, *
1.天津大学 表层地球系统科学研究院,天津 300072;
2.浙江农林大学 环境与资源学院, 浙江 临安 311300;
3.天主教鲁汶大学 地球生命研究院,新鲁汶1348,比利时
Advances in Study of Phytolith Carbon Sequestration in Terrestrial Ecosystems of China
Pan Wenjie1, 2, Yang Xiaomin1, Zhang Xiaodong1, Li Zimin3, Yang Shilei1, Wu Yuntao1, Hao Qian1, Song Zhaoliang1, *
1.Institute of the Surface-Earth System Science Research, Tianjin University, Tianjin 300072, China;
2.School of Environment and Resources, Zhejiang Agricultural and Forestry University, Zhejiang Lin’an 311300, China;
3.Earth and Life Institute, Université
catholique de Louvain, Croix du Sud 2/10, 1348 Louvain-la-Neuve, Belgium
 全文: PDF(2319 KB)   HTML
摘要:

植硅体碳(Phytolith-Occluded Carbon,PhytOC)是一种相对稳定的碳组分,在生物地球化学碳循环和减缓全球变暖中扮演着重要角色。在总结前人研究的基础上,论述了植硅体碳的形成机制和其碳汇能力的影响因素,综述了当前中国陆地生态系统植硅体碳汇的研究成果,探讨了中国陆地生态系统植硅体碳汇的调控机制,最后对未来中国陆地生态系统植硅体碳汇的研究方向进行了展望。气候、地表植被类型、土壤环境及植硅体自身化学组份等诸多因素都将直接或间接影响植硅体的碳汇能力。中国草地、农田、森林、湿地和灌丛生态系统植硅体碳产生速率分别为(0.6±0.1)×106,(4.9±1.7)×106,(1.9±0.4)×106,(0.6±0.5)×106和(1.3±0.3)×106 t CO2 /a。含硅材料施加、高硅植物栽培和传统的提高植物地上净初级生产力等措施均可显著提高中国陆地生态系统植硅体碳汇潜力。今后应进一步研究不同植物产生植硅体碳的机理,加强不同陆地生态系统中植物地下部分植硅体碳汇能力的研究,对不同陆地生态系统土壤植硅体碳汇量进行量化,并提出更加全面、经济、合理的管理措施以提高植硅体碳汇量。

关键词: 陆地生态系统生物地球化学植硅体碳汇    
Abstract:

Phytolith-Occluded Carbon (PhytOC), a relatively stable carbon fraction, plays an important role in biogeochemical carbon cycle and mitigation of global warming. The formation mechanisms of PhytOC, the influence factors of phytolith carbon sequestration, the advances in study of phytolith carbon sequestration, and the management for enhancing the potential of phytolith carbon sequestration in terrestrial ecosystems of China were summarized in this review. Finally, future researches on phytolith carbon sequestration in terrestrial ecosystems of China were prospected. Climates, vegetation types, soil circumstances, the chemical compositions of the phytoliths and other factors will directly or indirectly affect the potential of phytolith carbon sequestration. In China, the PhytOC production quantity in grassland, cropland, forest, wetland and shrub ecosystems is (0.6±0.1)×106,(4.9±1.7)×106,(1.9±0.4)×106,(0.6±0.5)×106 and (1.3±0.3)×106 t CO2/a, respectively. Application of silicon-containing fertilizer, cultivation of high-silicon plant, and traditional enhancement of the plant net primary productivity can significantly improve the potential of phytolith carbon sequestration in terrestrial ecosystems of China. Future studies should focus more on ①the mechanisms of phytolith formation in different plants, ②the phytolith carbon sequestration in underground parts of plants from different terrestrial ecosystems, ③the quantification of soil PhytOC in different terrestrial ecosystems. Furthermore, more comprehensive, economical and reasonable management practices of improving the potential of phytolith carbon sequestration should also be further studied in different terrestrial ecosystems.

Key words: Terrestrial ecosystem    Phytolith carbon sequestration    Biogeochemistry.
收稿日期: 2017-03-01 出版日期: 2017-08-20
ZTFLH:  P593  
基金资助:

国家自然科学基金优秀青年科学基金项目“陆地硅—碳耦合生物地球化学循环”(编号:41522207)资助

通讯作者: 宋照亮(1978-),男,浙江义乌人,教授,主要从事生物地球化学研究.E-mail:songzhaoliang78@163.com   
作者简介: 潘文杰(1990-),男,河南新郑人,硕士研究生,主要从事植硅体碳汇研究.E-mail:pwj13145@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
杨孝民
张晓东
郝倩
宋照亮
潘文杰
李自民
杨石磊
吴云涛

引用本文:

潘文杰, 杨孝民, 张晓东, 李自民, 杨石磊, 吴云涛, 郝倩, 宋照亮. 中国陆地生态系统植硅体碳汇研究进展[J]. 地球科学进展, 2017, 32(8): 859-866.

Pan Wenjie, Yang Xiaomin, Zhang Xiaodong, Li Zimin, Yang Shilei, Wu Yuntao, Hao Qian, Song Zhaoliang. Advances in Study of Phytolith Carbon Sequestration in Terrestrial Ecosystems of China. Advances in Earth Science, 2017, 32(8): 859-866.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2017.08.0859        http://www.adearth.ac.cn/CN/Y2017/V32/I8/859

[1] Intergovernmental Panel on Climate Change (IPCC). Climate Change 2014: Mitigation of Climate Change[M]. Cambridge: Cambridge University Press, 2015.
[2] Parr J, Sullivan L, Chen B H, et al . Carbon bio-sequestration within the phytoliths of economic bamboo species[J]. Global Change Biology , 2010, 16(10): 2 661-2 667.
[3] Song Z L, Mcgrouther K, Wang H L. Occurrence, turnover and carbon sequestration potential of phytoliths in terrestrial ecosystems[J]. Earth-Science Reviews , 2016, 158: 19-30.
[4] Song Z L, Wang H L, Strong P J, et al . Plant impact on the coupled terrestrial biogeochemical cycles of silicon and carbon: Implications for biogeochemical carbon sequestration[J]. Earth-Science Reviews , 2012, 115(4): 319-331.
[5] Pan Genxing. Study on carbon reservoir in soils of China[J]. Bulletin of Science and Technology , 1999, 15(5): 330-332.[潘根兴. 中国土壤有机碳和无机碳库量研究[J]. 科技通报, 1999, 15(5): 330-332.]
[6] Wang Shaoqiang, Zhu Songli. Analysis on spatial distribution characteristics of soil organic carbon reservoir in China[J]. Acta Geographica Sinica , 2000, 55(5): 533-544.[王绍强, 朱松丽. 中国土壤有机碳库及空间分布特征分析[J]. 地理学报, 2000, 55(5): 533-544.]
[7] Ma J F. Functions of silicon in higher plants[M]∥ Müller W E G, ed. Silicon Biomineralization. Progress in Molecular and Subcellular Biology. Berlin, Heidelberg:Springer,2003,33:127-147.
[8] Parr J F, Sullivan L A. Soil carbon sequestration in phytoliths[J]. Soil Biology and Biochemistry , 2005, 37(1): 117-124.
[9] Wang Yongji, Lü Houyuan. Phytolith Study and Its Application[M]. Beijing: Ocean Press, 1993.[王永吉, 吕厚远. 植物硅酸体研究及应用[M]. 北京: 海洋出版社, 1993.]
[10] Raven P H, Evert R F, Eichhorn S E. Biology of Plants[M]. New York: Freeman, 1999.
[11] Bartoli F, Wilding L P. Dissolution of biogenic opal as a function of its physical and chemical properties[J]. Soil Science Society of America Journal , 1980, 44(4): 873-878.
[12] Kameník J, Mizera J, Randa Z. Chemical composition of plant silica phytoliths[J]. Environmental Chemistry Letters , 2013, 11(2): 189-195.
[13] Wang Yongji. A study on the chemical composion of phytoliths[J]. Journal of Oceanogr Huanghai Bohai , 1998, 16(3): 33-37.[王永吉.植物硅酸体化学成分的研究[J]. 黄渤海海洋, 1998, 16(3): 33-37.]
[14] Anala R, Nambisan P. Study of morphology and chemical composition of phytoliths on the surface of paddy straw[J]. Paddy and Water Environment , 2015, 13(4): 521-527.
[15] Li Z M, Song Z L, Cornelis J, et al . Impact of rice cultivar and organ on elemental composition of phytoliths and the release of bio-available silicon[J]. Frontiers in Plant Science , 2014, 5: 529-529.
[16] Hodson M J, White P J, Mead A, et al . Phylogenetic variation in the silicon composition of plants[J]. Annals of Botany , 2005, 96(6): 1 027-1 046.
[17] Zhang S B, Zhang J L, Slik J W, et al . Leaf element concentrations of terrestrial plants across China are influenced by taxonomy and the environment[J]. Global Ecology and Biogeography , 2012, 21(8): 809-818.
[18] Epstein E. The anomaly of silicon in plant biology[J]. Proceedings of the National Academy of Sciences of the United States of America , 1994, 91(1): 11-17.
[19] Parr J F, Sullivan L A, Quirk R, et al . Sugarcane phytoliths: Encapsulation and sequestration of a long-lived carbon fraction[J]. Sugar Technologies , 2009, 11(1): 17-21.
[20] Li Z M, Song Z L, Parr J F, et al . Occluded C in rice phytoliths: Implications to biogeochemical carbon sequestration[J]. Plant and Soil , 2013, 370(1): 615-623.
[21] Mann S, Perry C C. Structural aspects of biogenic silica[J]. Ciba Foundation Symposium , 1986, 121(1): 40.
[22] Carter J A. Atmospheric carbon isotope signatures in phytolith-occluded carbon[J]. Quaternary International , 2009, 193(1): 20-29.
[23] Elbaum R, Melamed-Bessudo C, Tuross N, et al . New methods to isolate organic materials from silicified phytoliths reveal fragmented glycoproteins but no DNA[J]. Quaternary International , 2009, 193(1/2): 11-19.
[24] Xu Zijuan, Zuo Xinxin, Fan Bailing, et al . Advances in geochemical study of phytolith occluded carbon[J]. Advances in Earth Science , 2017, 32(2): 151-159.[许子娟, 左昕昕, 范百龄, 等. 植硅体圈闭碳地球化学研究进展[J]. 地球科学进展, 2017, 32(2): 151-159.]
[25] Kelly E F, Amundson R G, Marino B D, et al. Stable isotope ratios of carbon in phytoliths as a quantitative method of monitoring vegetation and climate change[J]. Quaternary Research , 1991, 35(2):222-233.
[26] Wilding L P. Radiocarbon dating of biogenetic opal[J]. Science , 1967, 156(3 771): 66-67.
[27] Alexandre A, Meunier J D, Lézine A M, et al . Phytoliths: Indicators of grassland dynamics during the late Holocene in intertropical Africa[J]. Palaeogeography Palaeoclimatology Palaeoecology , 1997, 136(1/4): 213-229.
[28] Borrelli N. Silica content in soil solution and its relation with phytolith weathering and silica biogeochemical cycle in Typical Argiudolls of the Pampean Plain, Argentina—A preliminary study[J]. Journal of Soils and Sediments , 2010, 10(6): 983-994.
[29] Blecker S W, Mcculley R L, Chadwick O A, et al . Biologic cycling of silica across a grassland bioclimosequence[J]. Global Biogeochemical Cycles , 2006, 20(3):4 253-4 274.
[30] Fraysse F, Pokrovsky O S, Schott J, et al . Surface properties, solubility and dissolution kinetics of bamboo phytoliths[J]. Geochimica et Cosmochimica Acta , 2006, 70(8): 1 939-1 951.
[31] Piperno D R. Phytoliths: A comprehensive guide for archaeologists and paleoecologists[J]. Economic Botany , 2006, 60(4): 391-392.
[32] Zuo X X, Lü H Y, Gu Z Y, et al . Distribution of soil phytolith-occluded carbon in the Chinese Loess Plateau and its implications for silica-carbon cycles[J]. Plant and Soil , 2013,374: 223-232.
[33] Fraysse F, Pokrovsky O S, Schott J, et al . Surface chemistry and reactivity of plant phytoliths in aqueous solutions[J]. Chemical Geology , 2009, 258(3): 197-206.
[34] Zhang X D,Song Z L,Zhao Z Q, et al .Impact of climate and lithology on soil phytolith-occluded carbon accumulation in eastern China[J]. Journal of Soils and Sediments ,2016,17(2):1-10.
[35] Carnelli A L, Madella M, Theurillat J P. Biogenic silica production in selected alpine plant species and plant communities[J]. Annals of Botany , 2001, 87(4): 425-434.
[36] Song Z L, Liu H Y, Si Y, et al . The production of phytoliths in China’s grasslands: Implications to the biogeochemical sequestration of atmospheric CO 2 [J]. Global Change Biology , 2012, 18(12): 3 647-3 653.
[37] Qi L M, Li F Y, Huang Z T, et al . Phytolith-occluded organic carbon as a mechanism for long-term carbon sequestration in a typical steppe: The predominant role of belowground productivity[J]. Science of the Total Environment , 2017, 577: 413-417.
[38] Chai Xi, Liang Cunzhu, Liang Maowei, et al . Seasonal dynamics of belowground biomass and productivity and potential of carbon sequestration in meadow steppe and typical steppe, in Inner Mongolia, China[J]. Acta Ecologica Sinica , 2014, 34(19): 5 530-5 540.[柴曦, 梁存柱, 梁茂伟, 等. 内蒙古草甸草原与典型草原地下生物量与生产力季节动态及其碳库潜力[J]. 生态学报, 2014, 34(19): 5 530-5 540.]
[39] Piao S L, Fang J Y, Ciais P, et al . The carbon balance of terrestrial ecosystems in China[J]. Nature , 2009, 458(7 241): 1 009-1 013.
[40] Zuo X X, Lü H Y. Carbon sequestration within millet phytoliths from dry-farming of crops in China[J]. Chinese Science Bulletin , 2011, 56(32): 3 451-3 456.
[41] Parr J F, Sullivan L A. Phytolith occluded carbon and silica variability in wheat cultivars[J]. Plant and Soil , 2011, 342(1): 165-171.
[42] Song Z L, Wang H L, Strong P J, et al . Phytolith carbon sequestration in China’s croplands[J]. European Journal of Agronomy , 2014, 53: 10-15.
[43] Bartoli F. The biogeochemical cycle of silicon in two temperate forest ecosystems[J]. Ecological Bulletins , 1983,35: 469-476.
[44] Lucas Y, Luizao F J, Chauvel A, et al . The relation between biological activity of the rain forest and mineral composition of soils[J]. Science , 1993, 260(5 107): 521-523.
[45] Song Z L, Liu H Y, Li B L, et al . The production of phytolith-occluded carbon in China’s forests: Implications to biogeochemical carbon sequestration[J]. Global Change Biology , 2013, 19(9): 2 907-2 915.
[46] He Shanqiong, Huang Zhangting, Wu Jiasen, et al . Evolution pattern of phytolith-occluded carbon in typical forest-soil ecosystems in tropics and subtropics, China[J]. Journal of Applied Ecology , 2016, 27(3): 697-704.[何珊琼, 黄张婷, 吴家森, 等. 热带, 亚热带典型森林—土壤系统植硅体碳演变规律[J]. 应用生态学报, 2016, 27(3): 697-704.]
[47] Feng Zongwei. Biomass and Productivity of Forest Ecosystem in China[M]. Beijing: Science Press,1999.[冯宗炜. 中国森林生态系统的生物量和生产力[M]. 北京:科学出版社, 1999.]
[48] Ying Yuqi, Xiang Tingting, Li Yongfu, et al . Estimation of sequestration potential via phytolith carbon by important forest species in subtropical China[J]. Journal of Natural Resources ,2015,30 (1): 133-140.[应雨骐, 项婷婷, 李永夫, 等. 中国亚热带重要树种植硅体碳封存潜力估测[J]. 自然资源学报, 2015,30(1): 133-140.]
[49] Li Z M, Song Z L, Jiang P K. Biogeochemical sequestration of carbon within phytoliths of wetland plants: A case study of Xixi wetland, China[J]. Chinese Science Bulletin , 2013, 58(20): 2 480-2 487.
[50] Li Z M, Song Z L, Li B L. The production and accumulation of phytolith-occluded carbon in Baiyangdian reed wetland of China[J]. Applied geochemistry , 2013, 37: 117-124.
[51] Ru N, Song Z, Liu H, et al . Phytolith carbon sequestration in shrublands of North China[J]. Silicon , 2016,doi:10.1007/s12633-016-9473-1.
[52] Liu X Y, Li L Q, Bian R J, et al . Effect of biochar amendment on soil-silicon availability and rice uptake[J]. Journal of Plant Nutrition and Soil Science , 2014, 177(1): 91-96.
[53] Song Z L, Wang H L, Strong P J, et al . Increase of available soil silicon by Si-rich manure for sustainable rice production[J]. Agronomy for Sustainable Development , 2013, 34(4): 813-819.
[54] Guo F S, Song Z L, Sullivan L, et al . Enhancing phytolith carbon sequestration in rice ecosystems through basalt powder amendment[J]. Science Bulletin , 2015, 60(6): 591-597.
[55] Song A L, Ning D F, Fan F L, et al . The potential for carbon bio-sequestration in China’s paddy rice ( Oryza sativa L.) as impacted by slag-based silicate fertilizer[J]. Scientific Reports , 2015, 5: 17 354.
[56] Li Zimin, Song Zhaoliang, Jiang Peikun. The production and accumulation of phytoliths in rice ecosystems: A case study to Jiaxing Paddy field[J]. Acta Ecologica Sinica , 2013, 33(22): 7 197-7 203.[李自民, 宋照亮, 姜培坤. 稻田生态系统中植硅体的产生与积累——以嘉兴稻田为例[J]. 生态学报, 2013, 33(22): 7 197-7 203.]
[57] Sun X, Liu Q, Gu J, et al . Evaluation of the occluded carbon within husk phytoliths of 35 rice cultivars[J]. Frontiers of Earth Science , 2016, 10(4): 683-690.
[58] Li B L, Song Z L, Li Z M, et al . Phylogenetic variation of phytolith carbon sequestration in bamboos[J]. Scientific Reports , 2014, 4: 4 710.
[59] Zhou G M, Meng C F, Jiang P K, et al . Review of carbon fixation in bamboo forests in China[J]. Botanical Review , 2011, 77(3): 262-270.

[1] 许子娟, 左昕昕, 范百龄, 丁新泉, 张晓东, 李子川, 闫翠香, 宋照亮. 植硅体圈闭碳地球化学研究进展[J]. 地球科学进展, 2017, 32(2): 151-159.
[2] 周浙昆, 周忠和, 王怿. 陆地生态系统与地球环境的协同演化[J]. 地球科学进展, 2016, 31(7): 682-688.
[3] 王训明, 周娜, 郎丽丽, 花婷, 焦琳琳, 马文勇. 风沙活动对陆地生态系统影响研究进展[J]. 地球科学进展, 2015, 30(6): 627-635.
[4] 邓涛, 王晓鸣, 王世骐, 李强, 侯素宽. 中国新近纪哺乳动物群的演化与青藏高原隆升的关系[J]. 地球科学进展, 2015, 30(4): 407-415.
[5] 李玉红, 詹力扬, 陈立奇. 北冰洋CH4研究进展[J]. 地球科学进展, 2014, 29(12): 1355-1361.
[6] 高会旺, 姚小红, 郭志刚, 韩志伟, 高树基. 大气沉降对海洋初级生产过程与氮循环的影响研究进展[J]. 地球科学进展, 2014, 29(12): 1325-1332.
[7] 洪义国. 硝酸盐氮氧稳定同位素分馏过程记录的海洋氮循环研究进展[J]. 地球科学进展, 2013, 28(7): 751-764.
[8] 陶贞,张超,高全洲,李元. 陆地硅的生物地球化学循环研究进展[J]. 地球科学进展, 2012, 27(7): 725-732.
[9] 何洪林,张黎, 黎建辉, 周园春,任小丽,于贵瑞. 中国陆地生态系统碳收支集成研究的e-Science 系统构建[J]. 地球科学进展, 2012, 27(2): 246-254.
[10] 马红梅,孙波,姜苏,安春雷,史贵涛,李院生. 极地冰下生物地球化学过程研究进展[J]. 地球科学进展, 2012, 27(2): 147-153.
[11] 单慧媚,马腾,刘存富,刘玲,杨杰. 有机溴化物的溴同位素测试技术及其生物地球化学指示意义[J]. 地球科学进展, 2011, 26(8): 811-821.
[12] 鱼腾飞,冯起,司建华,席海洋,陈丽娟. 遥感结合地面观测估算陆地生态系统蒸散发研究综述[J]. 地球科学进展, 2011, 26(12): 1260-1268.
[13] 李仁成,谢树成,顾延生. 植硅体稳定同位素生物地球化学研究进展[J]. 地球科学进展, 2010, 25(8): 812-819.
[14] 姚素平,丁 海,胡凯,焦堃. 我国南方早古生代聚煤过程中硫的生物地球化学行为及成矿效应[J]. 地球科学进展, 2010, 25(2): 174-183.
[15] 彭琴,董云社,齐玉春. 氮输入对陆地生态系统碳循环关键过程的影响[J]. 地球科学进展, 2008, 23(8): 874-883.